scholarly journals Application of OSL dosimetry and 3D printed phantom for comparison of calculation algorithms for VMAT treatment planning

Author(s):  
Daniel Villani ◽  
Carolina Dos Santos Moreno ◽  
Roberto Kenji Sakuraba ◽  
Letícia Lucente Campos

The application of new commercial and industrial technologies in the fields of dosimetry and medical physics is of great interest to the scientific community, both to validate existing protocols and to develop new methodologies. The popularization of 3D printing techniques has been analyzed as a great advantage in quality control in complex treatment techniques, such as radiotherapy and the development of patient simulators. Portable dosimetry systems such as Landauer MicroStar OSL system are versatile and their use in quality control is of great importance. The aim of this paper is to compare two of the most used dose calculation algorithms used in Varian Eclipse TPS – AAA and Acuros XB – for treatment planning of multiple brain metastases using a 3D printed anthropomorphic phantom and the OSL InLight system for experimental dosimetry validation. A 3D printed anthropomorphic skull phantom was submitted to a CT scan and planed five target volumes. In order of comparison, two dose calculations were performed in the Varian Eclipse 13.6 TPS with "Alabama technique", using the Varian’s AAA and AXB algorithms, and treatment delivered with 6 MV photon beam of a Varian TrueBeam linear accelerator. Landauer nanoDot dosimeters were positioned inside each of the five target volumes planned and the experimental dosimetric results were compared with the algorithms’ calculated doses. The findings of this work indicate that ACUROS XB calculates more accurate doses compared with AAA, with all the experimental agreements better than 96.0 %, probably because of the heterogeneity corrections. The uncertainty analysis of the InLight system device is enough to sustain the dosimetric uncertainties below 3.0 %, validating the results.  

2017 ◽  
Vol 62 (10) ◽  
pp. 4160-4182 ◽  
Author(s):  
Eleftherios P Pappas ◽  
Emmanouil Zoros ◽  
Argyris Moutsatsos ◽  
Vasiliki Peppa ◽  
Kyveli Zourari ◽  
...  

Author(s):  
V. S. Shaiju ◽  
Rajesh Kumar ◽  
K. V. Rajasekhar ◽  
George Zacharia ◽  
Debjani Phani ◽  
...  

Abstract Aim: To investigate the central electrode artefact effect of different ion chambers in the verification phantom using the dose calculation algorithms Analytical Anisotropic Algorithm (AAA) and Acuros XB. Materials and methods: The dosimetric study was conducted using an in-house fabricated polymethyl methacrylate head phantom. The treatment planning system (TPS)-calculated doses in the phantom with detectors were compared against the dummy detector fillets using AAA and Acuros XB algorithm. The planned and measured doses were compared for the study. Results: The mean percentage variation in volumetric-modulated arc therapy plans using Acuros XB and the measurement in the head phantom are statistically significant (p-value = 0.001) for FC65 and CC13 chambers. In small volume chambers (A14SL and CC01), the measured and TPS-calculated dose shows a good agreement. Findings: The study confirmed the CT set of the phantom with detectors (FC65 and CC13) give more artefacts/heterogeneity caused a significant variation in dose calculation using Acuros XB. Therefore, the study suggests a method of using phantom CT set with the dummy detector for mean dose calculation for the Acuros XB algorithm.


2014 ◽  
Vol 13 (4) ◽  
pp. 447-455 ◽  
Author(s):  
K. Tanha ◽  
S. R. Mahdavi ◽  
G. Geraily

AbstractAimsTo verify the accuracy of two common absorbed dose calculation algorithms in comparison to Monte Carlo (MC) simulation for the planning of the pituitary adenoma radiation treatment.Materials and methodsAfter validation of Linac's head modelling by MC in water phantom, it was verified in Rando phantom as a heterogeneous medium for pituitary gland irradiation. Then, equivalent tissue-air ratio (ETAR) and collapsed cone convolution (CCC) algorithms were compared for a conventional three small non-coplanar field technique. This technique uses 30 degree physical wedge and 18 MV photon beams.ResultsDose distribution findings showed significant difference between ETAR and CCC of delivered dose in pituitary irradiation. The differences between MC and dose calculation algorithms were 6.40 ± 3.44% for CCC and 10.36 ± 4.37% for ETAR. None of the algorithms could predict actual dose in air cavity areas in comparison to the MC method.ConclusionsDifference between calculation and true dose value affects radiation treatment outcome and normal tissue complication probability. It is of prime concern to select appropriate treatment planning system according to our clinical situation. It is further emphasised that MC can be the method of choice for clinical dose calculation algorithms verification.


Sign in / Sign up

Export Citation Format

Share Document