small field dosimetry
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 4)

Author(s):  
Brennen Dobberthien ◽  
Fred Cao ◽  
Yingli Zhao ◽  
Eric Harvey ◽  
Genoveva Badragan

Abstract External beam radiotherapy often includes the use of field sizes 3 × 3 cm2 or less, which can be defined as small fields. Dosimetry is a difficult, yet important part of the radiotherapy process. The dosimetry of small fields has additional challenges, which can lead to treatment inconsistencies if not done properly. Most important is the use of an appropriate detector, as well as the application of the necessary corrections. The International Atomic Energy Agency and the American Association of Physicists in Medicine provide the International Code of Practice (CoP) TRS-483 for the dosimetry of small static fields used in external MV photon beams. It gives guidelines on how to apply small-field correction factors for small field dosimetry. The purpose of this study was to evaluate the impact of inaccurate small-field output factors on clinical brain stereotactic radiosurgery plans with and without applying the small-field correction factors as suggested in the CoP. Small-field correction factors for a Varian TrueBeam linear accelerator were applied to uncorrected relative dose factors. Uncorrected and corrected clinical plans were created with two different beam configurations, 6 MV with a flattening filter (6 WFF) and 6 MV without a flattening filter (6 FFF). For the corrected plans, the planning target volume mean dose was 1.6 ± 0.9% lower with p < 0.001 for 6 WFF and 1.8 ± 1.5% lower with p < 0.001 for 6 FFF. For brainstem, a major organ at risk, the corrected plans had a dose that was 1.6 ± 0.9% lower with p = 0.03 for 6 WFF and 1.8 ± 1.5% lower with p = 0.10 for 6 FFF. This represents a systematic error that should and can be corrected.


Author(s):  
Sumalee Yabsantia ◽  
Sivalee Suriyapee ◽  
Nakorn Phaisangittisakul ◽  
Sornjarod Oonsiri ◽  
Taweap Sanghangthum ◽  
...  

Abstract Introduction: This study aims to experimentally determine field output factors using the methodologies suggested by the IAEA-AAPM TRS-483 for small field dosimetry and compare with the calculation from Monte Carlo (MC) simulation. Methods: The IBA-CC01, Sun Nuclear EDGE and IBA-SFD detectors were employed to determine the uncorrected and the corrected field output factors for 6 MV photon beams. Measurements were performed at 100 cm source to axis distance, 10 cm depth in water, and the field sizes ranged from 1 × 1 to 10 × 10 cm2. The use of field output correction factors proposed by the TRS-483 was utilised to determine field output factors. The measured field output factors were compared to that calculated using the egs_chamber user code. Results: The decrease in the percentage standard deviation of the measured three detectors was observed after applying the field output correction factors. Measured field output factors using CC01 and EDGE detectors agreed with MC values within 3% for field sizes down to 1 × 1 cm2, except the SFD detector. Conclusions: The corrected field output factors agree with the calculation from MC, except the SFD detector. CC01 and EDGE are suitable for determining field output factors, while the SFD may need more implementation of the intermediate field method.


2021 ◽  
Vol 27 (3) ◽  
pp. 207-212
Author(s):  
Marcin Szymański ◽  
Maria Piziorska ◽  
Oskar Madetko ◽  
Wioletta Ślusarczyk-Kacprzyk ◽  
Wojciech Bulski

Abstract Introduction: The aim of this study was to propose a dosimetric audit of the CyberKnife system. Dosimetry audit is an important part of the quality assurance process in radiotherapy. Most of the proposed dosimetric audits are dedicated to classical medical accelerators. Currently, there is no commonly implemented scheme for conducting a dosimetric audit of the CyberKnife accelerator. Material and methods: To verify the dosimetric and geometric parameters of the entire radiotherapy process, as is required in E2E test procedure, the CIRS SHANE anthropomorphic phantom was used. A tomography with a resolution of 1.5 mm was prepared, five PTVs (Planning Target Volume) of different volumes were drawn; approximately: 88 cm3, 44 cm3, 15 cm3, 7 cm3, 1.5 cm3. Five treatment plans were made using the 6D Skull tracking method, FIXED collimators, RayTracing algorithm. Each treatment plan was verified in a slab Phantom, with a PinPoint chamber. The dose was measured by an ionization chamber type TM31010 Semiflex, placed in the center area of the target. Results: The result of the QA verification in slab phantom was up to 5,0%. The percentage difference for the measurement in the SHANE phantom was: 4.29%, -1.42%, -0.70%, 1.37%, -1.88% respectively for the targets: 88 cm3, 44 cm3, 15 cm3, 7 cm3, 1.5 cm3. Conclusions: By analyzing various approaches to small-field dosimetry audits in the literature, it can be assumed that the proposed CyberKnife dosimetric audit using the SHANE phantom is an appropriate method of verification of the radiotherapy process. Particular attention should be paid to the target volume, adjusting it to the system capabilities.


2021 ◽  
Author(s):  
Rajesh Regmi ◽  
Dominic Maes ◽  
Alexander Nevitt ◽  
Allison Toltz ◽  
Erick Leuro ◽  
...  

Abstract Treatment of ocular tumors on dedicated scattering-based proton therapy systems is standard afforded due to sharp lateral and distal penumbras. However, most newer proton therapy centers provide pencil beam scanning treatments. In this paper, we present a pencil beam scanning (PBS)-based ocular treatment solution. The design, commissioning, and validation of an applicator mount for a conventional PBS snout to allow for ocular treatments are given. In contrast to scattering techniques, PBS-based ocular therapy allows for inverse planning, providing planners with additional flexibility to shape the radiation field, potentially sparing healthy tissues. PBS enables the use of commercial Monte Carlo algorithms resulting in accurate dose calculations in the presence of heterogeneities and fiducials. The validation consisted of small field dosimetry measurements of point doses, depth doses, and lateral profiles relevant to ocular therapy. A comparison of beam properties achieved through the applicator against published literature is presented. We successfully showed the feasibility of PBS-based ocular treatments.


2021 ◽  
Vol 9 ◽  
Author(s):  
C. Talamonti ◽  
K. Kanxheri ◽  
S. Pallotta ◽  
L. Servoli

Many new X-Ray treatment machines using small and/or non-standard radiation fields, e.g., Tomotherapy, Cyber-knife, and linear accelerators equipped with high-resolution multi-leaf collimators and on-board imaging system, have been introduced in the radiotherapy clinical routine within the last few years. The introduction of these new treatment modalities has led to the development of high conformal radiotherapy treatment techniques like Intensity Modulated photon Radiation Therapy, Volumetric Modulated Arc Therapy, and stereotactic radiotherapy. When using these treatment techniques, patients are exposed to non-uniform radiation fields, high dose gradients, time and space variation of dose rates, and beam energy spectrum. This makes reaching the required degree of accuracy in clinical dosimetry even more demanding. Continuing to use standard field procedures and detectors in fields smaller than 3 × 3 cm2, will generate a reduced accuracy of clinical dosimetry, running the risk to overshadowing the progress made so far in radiotherapy applications. These dosimetric issues represent a new challenge for medical physicists. To choose the most appropriate detector for small field dosimetry, different features must be considered. Short- and long-term stability, linear response to the absorbed dose and dose rate, no energy and angular dependence, are all needed but not sufficient. The two most sought-after attributes for small field dosimetry are water equivalence and small highly sensitive (high sensitivity) volumes. Both these requirements aim at minimizing perturbations of charged particle fluence approaching the Charged Particle Equilibrium condition as much as possible, while maintaining high spatial resolution by reducing the averaging effect for non-uniform radiation fields. A compromise between different features is necessary because no dosimeter currently fulfills all requirements, but diamond properties seem promising and could lead to a marked improvement. Diamonds have long been used as materials for dosimeters, but natural diamonds were only first used for medical applications in the 80 s. The availability of reproducible synthetic diamonds at a lower cost compared to natural ones made the diffusion of diamonds in dosimetry possible. This paper aims to review the use of synthetic poly and single-crystal diamond dosimeters in radiotherapy, focusing on their performance under MegaVoltage photon beams. Both commercial and prototype diamond dosimeters behaviour are described and analyzed. Moreover, this paper will report the main related results in literature, considering diamond development issues like growth modalities, electrical contacts, packaging, readout electronics, and how do they affect all the dosimetric parameters of interest such as signal linearity, energy dependence, dose-rate dependence, reproducibility, rise and decay times.


2021 ◽  
pp. 20190561
Author(s):  
Rahul Kumar Chaudhary ◽  
Rajesh Kumar ◽  
SD Sharma ◽  
D Datta

Objective: To estimate the epistemic (or fuzzy) uncertainty, arising due to limited data samples in the measurement of the output factors (OF) of the small fields using Fuzzy Set Theory (FST). Methods: EBT3 film samples of size 50 × 50 mm were used for the measurement of the OF of stereotactic radiosurgery (SRS) cones of size 4, 6, 7.5, 10, 12.5 and 15 mm diameter, normalized with respect to the output of 100 × 100 mm open field size. Three measurements were done per cone/field size. Red color channel was chosen for the dosimetry purpose, net optical density (NOD) was converted to the dose using non-linear relation. To estimate the epistemic uncertainty associated with the measured OF due to limited number of data samples, a triangular fuzzy number (TFN) was assumed as the fuzziness in the dose delivered by the individual SRS cone/field. Uncertainty in the OF was estimated by applying the Fuzzy Vertex Method (FVM). The membership functions of the OF were constructed for each cone size and the nature of the uncertainty in the OF of the cones was expressed in the terms of its fuzziness. For the sake of completeness of the study, the statistical uncertainty involved in the procedure has also been calculated. Results: The statistical and fuzzy uncertainties in the measurement of OF of cones range from 3.28 to 6.25% and 2.58 to 5.44% respectively. The smallest cone of 4 mm has the largest values of statistical and fuzzy uncertainties. The membership functions of the OF for the studied cones were triangular in nature. Conclusions: The epistemic uncertainty arising due to limited number of data samples holds a significant fraction of the prescribed dose, and therefore, should not be ignored in the total uncertainty estimation. Advances in knowledge: This study highlights the significance of epistemic component of measurement uncertainty arising out due to the insufficient/limited number of measurements of a quantity.


2021 ◽  
Vol 22 (2) ◽  
pp. 185-193
Author(s):  
Luis Muñoz ◽  
Tomas Kron ◽  
Marco Petasecca ◽  
Joseph Bucci ◽  
Michael Jackson ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153303382110365
Author(s):  
Zike Huang ◽  
Jian Qiao ◽  
Cui Yang ◽  
Ming Liu ◽  
Jiazhou Wang ◽  
...  

Background: Plastic scintillator detector (PSD) Exradin W1 has shown promising performance in small field dosimetry due to its water equivalence and small sensitive volume. However, few studies reported its capability in measuring fields of conventional sizes. Therefore, the purpose of this study is to assess the performance of W1 in measuring point dose of both conventional IMRT plans and VMAT SRS plans. Methods: Forty-seven clinical plans (including 29 IMRT plans and 18 VMAT SRS plans with PTV volume less than 8 cm3) from our hospital were included in this study. W1 and Farmer-Type ionization chamber Exradin A19 were used in measuring IMRT plans, and W1 and microchamber Exradin A16 were used in measuring SRS plans. The agreement between the results of different types of detectors and TPS was evaluated. Results: For IMRT plans, the average differences between measurements and TPS in high-dose regions were 0.27% ± 1.66% and 0.90% ± 1.78% ( P = 0.056), and were −0.76% ± 1.47% and 0.37% ± 1.34% in low-dose regions ( P = 0.000), for W1 and A19, respectively. For VMAT SRS plans, the average differences between measurements and TPS were −0.19% ± 0.96% and −0.59% ± 1.49% for W1 and A16 with no statistical difference ( P = 0.231). Conclusion: W1 showed comparable performance with application-dedicated detectors in point dose measurements for both conventional IMRT and VMAT SRS techniques. It is a potential one-stop solution for general radiotherapy platforms that deliver both IMRT and SRS plans.


2020 ◽  
Vol 152 ◽  
pp. S694
Author(s):  
S.B.C. Debnath ◽  
D. Tonneau ◽  
C. Fauquet ◽  
A. Goncalves ◽  
A. Tallet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document