scholarly journals Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model

Tellus B ◽  
2000 ◽  
Vol 52 (5) ◽  
pp. 1159-1188 ◽  
Author(s):  
Timothy M. Lenton
2016 ◽  
Author(s):  
J. Schwinger ◽  
N. Goris ◽  
J. Tjiputra ◽  
I. Kriest ◽  
M. Bentsen ◽  
...  

Abstract. Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of two different model versions at different grid resolutions and using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the fully coupled model NorESM-ME1, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model) does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme prescribing a linear increase of sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production in high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO2 concentrations to derive the past and contemporary ocean carbon sink. For the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr-1 depending on model version, grid resolution and atmospheric forcing data set.


Tellus B ◽  
2010 ◽  
Vol 62 (4) ◽  
pp. 296-313 ◽  
Author(s):  
Katsumi Matsumoto ◽  
Kathy Tokos ◽  
Megumi Chikamoto ◽  
Andy Ridgwell

2016 ◽  
Vol 9 (8) ◽  
pp. 2589-2622 ◽  
Author(s):  
Jörg Schwinger ◽  
Nadine Goris ◽  
Jerry F. Tjiputra ◽  
Iris Kriest ◽  
Mats Bentsen ◽  
...  

Abstract. Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO2 concentrations to derive the past and contemporary ocean carbon sink. For the period 1990–1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr−1 depending on model version, grid resolution, and atmospheric forcing data set.


Tellus B ◽  
2010 ◽  
Vol 62 (4) ◽  
Author(s):  
Katsumi Matsumoto ◽  
Kathy S. Tokos ◽  
Megumi O. Chikamoto ◽  
Andy Ridgwell

2018 ◽  
Author(s):  
Yifei Dai ◽  
Long Cao ◽  
Bin Wang

Abstract. In this study, we evaluate the performance of Nanjing University of Information Science & Technology Earth System Model, version 2.0.1 (hereafter NESM-2.0.1). We focus on model simulated historical and future oceanic CO2 uptake, and analyze the effect of global warming on model-simulated oceanic CO2 uptake. Compared with available observations and data-based estimates, NESM-2.0.1 reproduces reasonably well large-scale ocean carbon-related fields, including nutrients (phosphate, nitrite and silicate), chlorophyll, and net primary production. However, some noticeable discrepancies between model simulations and observations are found in the deep ocean and coastal regions. Model-simulated current-day oceanic CO2 uptake compares well with data-based estimate. From pre-industrial time to 2011, modeled cumulative CO2 uptake is 144 PgC, compared with data-based estimates of 155 ± 30 PgC. Diagnosed from the end of the benchmark 1 % per year CO2 increase simulations, carbon-climate feedback parameter, which represents the sensitivity of ocean CO2 uptake to climate change, is −7.1 PgC/K; Carbon-concentration feedback parameter, which represents the sensitivity of ocean CO2 uptake to increase in atmospheric CO2 is 0.81 PgC/ppm. These two feedback parameters diagnosed from model simulations are consistent with the mean value diagnosed from the CMIP5 (Coupled Model Intercomparison Project phase 5) model simulations under the same 1 % per year CO2 simulations (−7.8 PgC/K and 0.80 PgC/ppm, respectively). Our results demonstrate that NESM-2.0.1 can be used as a useful tool in the investigation of feedback interactions between the ocean carbon cycle, atmospheric CO2, and climate change.


Author(s):  
Tilo Ziehn ◽  
Matthew A. Chamberlain ◽  
Rachel M. Law ◽  
Andrew Lenton ◽  
Roger W. Bodman ◽  
...  

The Australian Community Climate and Earth System Simulator (ACCESS) has been extended to include land and ocean carbon cycle components to form an Earth System Model (ESM). The current version, ACCESS-ESM1.5, has been mainly developed to enable Australia to participate in the Coupled Model Intercomparison Project Phase 6 (CMIP6) with an ESM version. Here we describe the model components and changes to the previous version, ACCESS-ESM1. We use the 500-year pre-industrial control run to highlight the stability of the physical climate and the carbon cycle. The long spin-up, negligible drift in temperature and small pre-industrial net carbon fluxes (0.02 and 0.08 PgC year−1 for land and ocean respectively) highlight the suitability of ACCESS-ESM1.5 to explore modes of variability in the climate system and coupling to the carbon cycle. The physical climate and carbon cycle for the present day have been evaluated using the CMIP6 historical simulation by comparing against observations and ACCESS-ESM1. Although there is generally little change in the climate simulation from the earlier model, many aspects of the carbon simulation are improved. An assessment of the climate response to CO2 forcing indicates that ACCESS-ESM1.5 has an equilibrium climate sensitivity of 3.87°C.


2018 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g. 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multi-millennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speedup is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean-sea ice horizontal grid configuration that allows an increase of the ocean-sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasises model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates, and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2019 ◽  
Vol 12 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g., 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multimillennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speed-up is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean–sea ice horizontal grid configuration that allows an increase of the ocean–sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasizes model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


Sign in / Sign up

Export Citation Format

Share Document