Practice for dosimetry in an X-ray (bremsstrahlung) facility for radiation processing

1999 ◽  
Keyword(s):  
Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 163 ◽  
Author(s):  
Casimiro ◽  
Ferreira ◽  
Leal ◽  
Pereira ◽  
Monteiro

The use of ionizing radiation processing technologies has proven to be one of the most versatile ways to prepare a wide range of membranes with specific tailored functionalities, thus enabling them to be used in a variety of industrial, environmental, and biological applications. The general principle of this clean and environmental friendly technique is the use of various types of commercially available high-energy radiation sources, like 60Co, X-ray, and electron beam to initiate energy-controlled processes of free-radical polymerization or copolymerization, leading to the production of functionalized, flexible, structured membranes or to the incorporation of functional groups within a matrix composed by a low-cost polymer film. The present manuscript describes the state of the art of using ionizing radiation for the preparation and functionalization of polymer-based membranes for biomedical and environmental applications.


2020 ◽  
Vol 12 (1) ◽  
pp. 83-91
Author(s):  
M. Sahoo ◽  
B. Mallick ◽  
S. Rout ◽  
G. N. Dash

The change in structural and mechanical behavior of polyethylene terephthalate (PET) due to 2.4 MeV proton has been studied. Radiation processing of PET polymer is carried out using different low doses such as 0.2, 2.0, and 20 kGy. The Physics of microstrain and radiation-induced mesophase formation are analysed. X-ray investigation indicates that  proton-induced structural modification takes place in the material. Apart from usual diffraction peaks, a low intensity broad peak is observed at small angle of about 2q =10º, when the fibre axis is mounted parallel to the X-ray direction. Such peak is absent in the diffraction spectrum when the fibre axis is mounted perpendicular to the beam direction. The appearance of the extra peak in a particular orientation confirms that, the phase is 2-dimensionally oriented (mesophase). The Young’s modulus (Y) of this irradiated PET sample is found to be more than that of the virgin sample with the highest value recorded for a dose of 2.0 kGy. The decrease in Y for higher dose (20 kGy) may be due to enhanced ion-induced microstrain in the sample, causing degradation in mechanical strength.


Author(s):  
K. Yotsumoto ◽  
H. Sunaga ◽  
S. Tanaka ◽  
T. Kanazawa ◽  
T. Agematsu ◽  
...  

2020 ◽  
Vol 23 (2) ◽  
pp. First
Author(s):  
Ngoc Hoang Van ◽  
Huy Viet Le ◽  
Son An Nguyen ◽  
Kume Tamikazu

Introduction: Dosimetry is of crucial importance in radiation processing of food. Among others, plastic film has been widely used for dosimetry in radiation therapy since its density is quite similar to the equivalent biological materials. In this study, the depth dose distribution was estimated by using gafchromic film for the purpose of dosimetry in food irradiation. Experimental: The HD-V2 gafchromic dosimetry film was employed to measure the interested dose instead of ion chamber. A stack of 19 PMMA (polymethyl methacrylate) sheets interleaved with 20 pieces of gafchromic film was made. The phantom was applied in the low energy X-ray beams (maximum 100 keV) to obtain the depth dose profile. Results: A significant correlation between absorbed doses (D) and color level or optical density (O.D.) of irradiated dosimetry films was observed. The fitting function has the form of , where a, b, c are the parameters to be fitted. The depth dose distribution in the 30 mm thickness phantom was inferred from the calibration. Conclusion: The present method and the depth dose profile to be obtained are very meaningful in the processing of foodstuffs by radiation.


Author(s):  
Nguyen Anh Tuan ◽  
Chau Van Tao

Recently, a high energy electron beam from accelerators studied on the application for foods and medical devices irradiation, therapy, denature material, discolored semi-precious stones and degradation of environment pollution (Gas, Water, and Sludge Waste). The advantages of electron beam from accelerators are high power density and easy focusing on the target, but electron beam is only useful to irradiate on the surface of the irradiation product because their penetration is short. In order to irradiate high area density products, the X-ray converter is used to generate photon (bremsstrahlung effect). In this article, converting efficiency and direction of X-ray emission is measured by film dosimeter and simulated by MCNP-4c2 code. Measurement and simulation results show that converting efficiency depends on materials of the targets and electron energy, the converting efficiency of Ti – H2O – Pb converter at electron beam energy 5.0 MeV, 7.5 MeV, and 10.0 MeV are 5.57 %, 7.12 %, and 13.54 %. Ti – H2O – Pb converter is made up of 3 layers of Ti wrap material with the function of bearing, heat resistance, circulating cooling water between Ti and Pb layers to cooling, so it is applied for the accelerator.


Sign in / Sign up

Export Citation Format

Share Document