Fire-fighting pumps. Fire-fighting centrifugal pumps without primer

2015 ◽  
2021 ◽  
pp. 55-62
Author(s):  
Михаил Валерьевич Илеменов ◽  
Владимир Иванович Логинов ◽  
Сергей Михайлович Ртищев ◽  
Владимир Николаевич Козырев

Проанализировано применение погружных (плавающих) насосов в насосно-рукавных комплексах. Рассмотрены их преимущества перед центробежными насосами, устанавливаемыми в мобильной пожарной технике. На основе практики применения и технических характеристик погружных насосов, производимых ведущими зарубежными фирмами, сформулированы технические требования для разработки отечественного погружного насоса. Кроме того, технические требования могут стать основой разработки национального стандарта для этого типа пожарно-технической продукции. The article analyzes the results of operation of a relatively new type of centrifugal pump - a submersible (floating) centrifugal pump with a hydraulic drive. These pumps have a number of significant advantages over centrifugal pumps installed on mobile fire fighting equipment - they can be used to pump liquid from a mark up to minus 30 m. Since the suction pipe of such a pump is located directly in the pumped liquid (below the liquid mirror level), the phenomenon of cavitation is practically excluded. Submersible pumps are used to supply water in case of fire and for water disposal during the elimination of hazardous hydrological phenomena, both independently and in conjunction with centrifugal pumps installed on mobile fire fighting equipment (supply to pumping). All submersible pumps included in the set of hose-pumping complexes are of foreign production. The demand for such pumping units causes the need to develop domestic samples in order to get away from import dependence in the manufacture of pumping and hose systems and their operation. Based on the practice of using submersible pumps and the technical characteristics of submersible pumps produced by leading foreign companies, the following technical requirements for the development of a domestic submersible pump have been formulated. Pump delivery is 170-180 l ∙ s from the mark to minus 30 m. Water intake is possible both in equipped (adapted) and unequipped (unsuitable) places. In addition, the requirements for the hydraulic drive, weight and size characteristics, and some components have been formulated. In conclusion, some directions for the further development of pumping and hose systems and submersible pumping stations are considered.


2021 ◽  
Vol 6 (12) ◽  
pp. 2172-2175
Author(s):  
Sudirman Sudirman ◽  
Hasan Basri

The Samarinda State Polytechnic has a hydrant that does not work, because the installation is damaged and is 35 years old. Currently, a simple fire fighting water installation has been made at three points with a length of 257 meters for 16 buildings, which utilizes lake water inside the Samarinda State Polytechnic campus. Therefore, this service activity is intended to provide skills for security guard in the Samarinda State Polytechnic regarding the use of hydrants. The specifications of the equipment used are portable centrifugal pumps with a maximum capacity of 700 liters/minute, a horizontal reach length of 40 meters, a vertical height of 12 meters and a pump pressure of ±5 bar. The results of this activity revealed that all security guard at the Samarinda State Polytechnic were able to operate a simple fire extinguisher installation. In addition, security personnel also have the ability to maintain a fire pump engine.


Sign in / Sign up

Export Citation Format

Share Document