Cold-reduced carbon steel sheet according to hardness requirements

2015 ◽  
2017 ◽  
Vol 685 ◽  
pp. 168-177 ◽  
Author(s):  
Badirujjaman Syed ◽  
Sulthan Mohiddin Shariff ◽  
Gadhe Padmanabham ◽  
Shaumik Lenka ◽  
Basudev Bhattacharya ◽  
...  

2005 ◽  
Vol 495-497 ◽  
pp. 1591-1596 ◽  
Author(s):  
Vladimir Luzin ◽  
S. Banovic ◽  
Thomas Gnäupel-Herold ◽  
Henry Prask ◽  
R.E. Ricker

Low carbon steel (usually in sheet form) has found a wide range of applications in industry due to its high formability. The inner and outer panels of a car body are good examples of such an implementation. While low carbon steel has been used in this application for many decades, a reliable predictive capability of the forming process and “springback” has still not been achieved. NIST has been involved in addressing this and other formability problems for several years. In this paper, texture produced by the in-plane straining and its relationship to springback is reported. Low carbon steel sheet was examined in the as-received condition and after balanced biaxial straining to 25%. This was performed using the Marciniak in-plane stretching test. Both experimental measurements and numerical calculations have been utilized to evaluate anisotropy and evolution of the elastic properties during forming. We employ several techniques for elastic property measurements (dynamic mechanical analysis, static four point bending, mechanical resonance frequency measurements), and several calculation schemes (orientation distribution function averaging, finite element analysis) which are based on texture measurements (neutron diffraction, electron back scattering diffraction). The following objectives are pursued: a) To test a range of different experimental techniques for elastic property measurements in sheet metals; b) To validate numerical calculation methods of the elastic properties by experiments; c) To evaluate elastic property changes (and texture development) during biaxial straining. On the basis of the investigation, recommendations are made for the evaluation of elastic properties in textured sheet metal.


2021 ◽  
Vol 4 ◽  
pp. 74-80
Author(s):  
Zhang Yong Jun ◽  
◽  
Li Xin Peng ◽  
Wang Jiu Hua ◽  
Han Jing Tao ◽  
...  

As the object for the study, graphitized high-carbon steel sheet with a carbon content of 0.66 % was used, the tensile test of this sheet using a universal testing (breaking) machine was performed; as well as in-situ observation of the microstructure in the process of tensile deformation of this sheet using in-situ technology of scanning electron microscopy (SEM) was made. The test results show that the main mechanical properties in different directions of tested graphitized high-carbon steel sheet are relatively the same, that is, for a tensile sample of different directions, the ratio of the yield strength σ0,2 to the tensile strength σв is approximately 0.73; the strain hardening index n is approximately 0.24; the plastic deformation coefficient r is approximately 0.83. This indicates that this sheet did not exhibit significant anisotropy. In the process of tensile, deformation of the specimen is mainly developed from local plastic deformation of the graphite inclusions to the total deformation in the deformation zone of the sample; with the increase of displacement, micro-gap between the graphite inclusion and ferrite grain along the direction of the axis of tensile gradually formed and propagated along the direction perpendicular to the axis of tensile; number of slip lines in the ferrite matrix gradually increased, and the distance between them gradually decreases; when the sample breaks, in the fracture large dimple with the core of graphite inclusion and small dimples in the ferrite appears. And the ferrite matrix near the fracture is covered with slip lines, this shows that the ferritic matrix underwent severe plastic deformation before breaking.


Sign in / Sign up

Export Citation Format

Share Document