Resistance of metallic materials to liquid biogenic and alternative fuels and their blends

2017 ◽  
2021 ◽  
Author(s):  
Paul Yoon

Growing concerns regarding the environmental impact of burning fossil fuels and energy independence has spurned the transportation industry into developing a more eco-friendly and sustainable way to travel. The most promising frontier in this endeavor is the development of alternative fuels that will significantly reduce the carbon footprint of our current engines with little or no modifications required. The effect that one of these frontier fuels may have, camelina based biofuel, on various fuel system materials was evaluated in this report in accordance with ASTM D4054 in the form of a 50:50 mixture. The materials went through an immersion process at varying temperatures and tested under the numerous standards outlined by the American Society for Testing and Materials (ASTM). The results were compared to a benchmark Jet A1 fuel since the effects of this fuel on current fuel system materials is extensively known. The purpose of this research is to determine the viability of using a 50:50 biofuel mixture in current aircraft fuel systems by evaluating the physical properties after being fuel treated. The results showed that the biofuel mixture affected the non-metallic materials in varying degrees, while not affecting the metallic materials.


2021 ◽  
Author(s):  
Paul Yoon

Growing concerns regarding the environmental impact of burning fossil fuels and energy independence has spurned the transportation industry into developing a more eco-friendly and sustainable way to travel. The most promising frontier in this endeavor is the development of alternative fuels that will significantly reduce the carbon footprint of our current engines with little or no modifications required. The effect that one of these frontier fuels may have, camelina based biofuel, on various fuel system materials was evaluated in this report in accordance with ASTM D4054 in the form of a 50:50 mixture. The materials went through an immersion process at varying temperatures and tested under the numerous standards outlined by the American Society for Testing and Materials (ASTM). The results were compared to a benchmark Jet A1 fuel since the effects of this fuel on current fuel system materials is extensively known. The purpose of this research is to determine the viability of using a 50:50 biofuel mixture in current aircraft fuel systems by evaluating the physical properties after being fuel treated. The results showed that the biofuel mixture affected the non-metallic materials in varying degrees, while not affecting the metallic materials.


2021 ◽  
Author(s):  
Olcay Met

As known alternative fuels shall undergo two crucial regulations in order to be certified: emission gas rate and the compatibility with engine parts. The objective of this research is to assess the compatibility of engine materials with JetA. The methodology here is in accordance with ASTM D4054; the proposed materials are soaked in proposed fuel. Subsequent to the soak period specimens are subject to specific test standards such as ASTM and visual inspection. Through assessment of compatibility the actual objective is to establish a systematic methodology for future alternative fuel research studies. In another meaning it is aimed to develop in-house capability to create optimum medium for future alternative fuel studies at Ryerson University's Facility for Research on Aerospace Materials and Engineered Structure. Results demonstrate that being wetted at elevated temperatures played a significant role on the physical properties of most non-metallic materials and there is almost no surface deformation observed on metallic materials.


2007 ◽  
Vol 546-549 ◽  
pp. 1093-1100 ◽  
Author(s):  
X. Nie ◽  
X. Li ◽  
Derek O. Northwood

Corrosion performances of several metallic materials (Al6061 and Al319 alloys, 304 stainless steel and grey cast iron) in the ethanol-gasoline alternative fuels were investigated. Cyclic potentiodynamic polarization tests were used to study their corrosion behavior. Anodizing and plasma electrolytic oxidation (PEO) techniques were used to produce oxide coatings on the Al6061 and Al319 alloys, and the corrosion properties of these coatings in the alternative fuel environments were also evaluated. The results showed that, the 304 stainless steel, Al6061 and the coating materials are compatible with the alternative fuels. The oxide coatings on both Al alloys provided effective corrosion protection in the alternative fuel environments.


2021 ◽  
Author(s):  
Olcay Met

As known alternative fuels shall undergo two crucial regulations in order to be certified: emission gas rate and the compatibility with engine parts. The objective of this research is to assess the compatibility of engine materials with JetA. The methodology here is in accordance with ASTM D4054; the proposed materials are soaked in proposed fuel. Subsequent to the soak period specimens are subject to specific test standards such as ASTM and visual inspection. Through assessment of compatibility the actual objective is to establish a systematic methodology for future alternative fuel research studies. In another meaning it is aimed to develop in-house capability to create optimum medium for future alternative fuel studies at Ryerson University's Facility for Research on Aerospace Materials and Engineered Structure. Results demonstrate that being wetted at elevated temperatures played a significant role on the physical properties of most non-metallic materials and there is almost no surface deformation observed on metallic materials.


Author(s):  
J. Temple Black

Since its introduction by Fernandez-Moran, the diamond knife has gained wide spread usage as a common material for cutting of thin sections of biological and metallic materials into thin films for examination in the transmission electron microscope. With the development of high voltage E.M. and scanning transmission E.M., microtomy applications will become increasingly important in the preparation of specimens. For those who can afford it, the diamond knife will thus continue to be an important tool to accomplish this effort until a cheaper but equally strong and sharp tool is found to replace the diamond, glass not withstanding.In Figs. 1 thru 3, a first attempt was made to examine the edge of a used (β=45°) diamond knife by means of the scanning electron microscope. Because diamond is conductive, first examination was tried without any coating of the diamond. However, the contamination at the edge caused severe charging during imaging. Next, a thin layer of carbon was deposited but charging was still extensive at high magnification - high voltage settings. Finally, the knife was given a light coating of gold-palladium which eliminated the charging and allowed high magnification micrographs to be made with reasonable resolution.


Author(s):  
J. R. Fekete ◽  
R. Gibala

The deformation behavior of metallic materials is modified by the presence of grain boundaries. When polycrystalline materials are deformed, additional stresses over and above those externally imposed on the material are induced. These stresses result from the constraint of the grain boundaries on the deformation of incompatible grains. This incompatibility can be elastic or plastic in nature. One of the mechanisms by which these stresses can be relieved is the activation of secondary slip systems. Secondary slip systems have been shown to relieve elastic and plastic compatibility stresses. The deformation of tungsten bicrystals is interesting, due to the elastic isotropy of the material, which implies that the entire compatibility stress field will exist due to plastic incompatibility. The work described here shows TEM observations of the activation of secondary slip in tungsten bicrystals with a [110] twist boundary oriented with the plane normal parallel to the stress axis.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-641-Pr9-646
Author(s):  
P. Chevrier ◽  
J. R. Klepaczko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document