Active assisted living (AAL) reference architecture and architecture model

2020 ◽  
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1616
Author(s):  
Andrej Grguric ◽  
Omar Khan ◽  
Ana Ortega-Gil ◽  
Evangelos K. Markakis ◽  
Konstantin Pozdniakov ◽  
...  

Motivated by the aging trend, much effort is being invested into implementing ICT (Information and Communications Technology)-enabled systems to provide a better quality of life and support the independent living of older people. As a result, many systems, often labeled as eHealth or AAL (Ambient/Active Assisted Living), were developed over the years. In creating such systems, which very often serve various needs, different architectures have emerged. This work focuses on analyzing and comparing the work and architectures from seven (six of which are in progress) EU-funded healthcare projects, with a total budget of 126MEUR in which we participate. After establishing the theoretical foundation by defining core concepts, we give a brief background on architectures in eHealth and AAL. We elaborate on the chosen analysis method based on three established healthcare and AAL taxonomies we identified by performing a literature survey and the selected Reference Architecture Model (RAM). Since there is no standard way of describing architectures in the eHealth and AAL domain, we conducted the online survey during August and September 2020 and identified CREATE-IoT 3D RAM as the most appropriate option. We present a classification of selected projects based on established taxonomies and map projects’ architectures to CREATE-IoT 3D RAM, which we also propose as standard RAM for future digital healthcare and AAL projects. During our analysis, we identify the most common types of assistance: communication support, reminders, monitoring, and guidance to address health and communication issues. We conclude that proper ecosystems are critical for lowering entry barriers and facilitating sustainable solutions for smart and healthy living.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 869
Author(s):  
Pablo F. S. Melo ◽  
Eduardo P. Godoy ◽  
Paolo Ferrari ◽  
Emiliano Sisinni

The technical innovation of the fourth industrial revolution (Industry 4.0—I4.0) is based on the following respective conditions: horizontal and vertical integration of manufacturing systems, decentralization of computing resources and continuous digital engineering throughout the product life cycle. The reference architecture model for Industry 4.0 (RAMI 4.0) is a common model for systematizing, structuring and mapping the complex relationships and functionalities required in I4.0 applications. Despite its adoption in I4.0 projects, RAMI 4.0 is an abstract model, not an implementation guide, which hinders its current adoption and full deployment. As a result, many papers have recently studied the interactions required among the elements distributed along the three axes of RAMI 4.0 to develop a solution compatible with the model. This paper investigates RAMI 4.0 and describes our proposal for the development of an open-source control device for I4.0 applications. The control device is one of the elements in the hierarchy-level axis of RAMI 4.0. Its main contribution is the integration of open-source solutions of hardware, software, communication and programming, covering the relationships among three layers of RAMI 4.0 (assets, integration and communication). The implementation of a proof of concept of the control device is discussed. Experiments in an I4.0 scenario were used to validate the operation of the control device and demonstrated its effectiveness and robustness without interruption, failure or communication problems during the experiments.


2015 ◽  
Vol 760 ◽  
pp. 219-224
Author(s):  
Ilie Octavian Popp ◽  
Dorin Telea

This paper is presented the concept of developing a generic reference architecture model for the specification, development, control and reconfiguration of a manufacturing enterprise at a work cell level. It is described a generic system architecture for FMS; there is also briefly explained how to configure the different resource modules that actually control the tasks of the physical device and put together a work cell consisting of other FMS resources. Using the principles of distributed object technology there could be implemented each resource in the work cell as a distributed object. Finally, an example on building a FMS using a hierarchical approach is presented.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 28 ◽  
Author(s):  
Salvatore Cavalieri ◽  
Marco Giuseppe Salafia

In the context of Industry 4.0, lot of effort is being put to achieve interoperability among industrial applications. As the definition and adoption of communication standards are of paramount importance for the realization of interoperability, during the last few years different organizations have developed reference architectures to align standards in the context of the fourth industrial revolution. One of the main examples is the reference architecture model for Industry 4.0, which defines the asset administration shell as the corner stone of the interoperability between applications managing manufacturing systems. Inside Industry 4.0 there is also so much interest behind the standard open platform communications unified architecture (OPC UA), which is listed as the one recommendation for realizing the communication layer of the reference architecture model. The contribution of this paper is to give some insights behind modelling techniques that should be adopted during the definition of OPC UA Information Model exposing information of the very recent metamodel defined for the asset administration shell. All the general rationales and solutions here provided are compared with the current OPC UA-based existing representation of asset administration shell provided by literature. Specifically, differences will be pointed out giving to the reader advantages and disadvantages behind each solution.


Sign in / Sign up

Export Citation Format

Share Document