Pliers and nippers. Multiple slip joint pliers. Dimensions and test values

2021 ◽  
Keyword(s):  
Author(s):  
Jian Song ◽  
Adrian Rodriguez‐Marek ◽  
Tugen Feng ◽  
Jian Ji
Keyword(s):  

1977 ◽  
Vol 11 (12) ◽  
pp. 1143-1146 ◽  
Author(s):  
S. Vaidya ◽  
C.M. Preece
Keyword(s):  

2015 ◽  
Vol 817 ◽  
pp. 706-711
Author(s):  
Yu Fei Shao ◽  
Xin Yang ◽  
Jiu Hui Li ◽  
Xing Zhao

Indenter size effect on the reversible incipient plasticity of Al (001) surface is studied by quasicontinuum simulations. Two cylindrical indenters with the radii 2.5nm and 17.5nm are used to penetrate the surface respectively, in displacement-control in steps of 0.02 nm. Results show that the plasticity under the small indenter is reversible, since it is dominated by the nucleation of a thin deformation twin, which can be fully removed after withdrawal of the indenter, due to the imaging force and stacking fault energy. Under the large indenter, multiple slip systems are activated simultaneously when incipient plasticity occurs, a few twin, dislocation and stacking fault ribbons still remain under the surface when the indenter has been completely retracted, thus the plasticity is irreversible.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
A. Bhattacharya ◽  
J. K. Dutt ◽  
R. K. Pandey

This paper mainly reports stability investigations of rotors supported on fluid film journal bearings possessing multilocational slip-no-slip zones at the bush–film interface. The coupled solution of governing equations (Reynolds equation, energy equation, heat diffusion equation, lubricant rheological relation, and thermal boundary conditions) has been used to find pressure distributions in the lubricating film followed by evaluation of bearing coefficients. These coefficients have been used to determine stability limit speed (SLS) of the system and its robustness for both short (nearly inflexible) and long (flexible) rotors. Numerical simulations show that the pattern of pressure distribution with multiple slip-no-slip zones is similar to that obtained for multilobe bearings, resulting in substantial improvement of rotor–bearing stability irrespective of eccentricity ratio. A reduction in friction force (up to Sommerfeld number 1.8) and an increase in SLS and robustness compared to conventional bearings are observed when used with short rotors. Typically, up to six pairs of slip-no-slip zones improve SLS of the rotor–shaft system and robustness for short rotors, although more pairs deteriorate both. However, for long rotors, where dynamic rotor forces also act, these bearings provide marginal improvement in stability and robustness only for a small range of slip length.


Sign in / Sign up

Export Citation Format

Share Document