scholarly journals TECHNOLOGY FOR PRODUCING COMPOSITE GLASS-CRYSTAL FACING MATERIALS BASED ON MIXED CULLET

Author(s):  
N. Bondarenko ◽  
O. Puchka ◽  
V. Bessmertnyy ◽  
S. Chuev ◽  
I. Izotova ◽  
...  

An effective energy-saving technology for producing composite glass-crystal facing materials based on fractionated cullet of sheet and container glasses, cullet of porcelain and sodium liquid glass has been developed. The use of fine porcelain powder in the composition of composite glass-crystal facing materials in an amount of up to 10 wt is justified. % and liquid sodium glass up to 5 wt. %. It is shown that the optimal fractional composition of granulated mixed cullet is 35 wt. % fraction 0.63-0.80 mm; 35 wt. % - fractions of 0.80-1.25 mm and 30 wt. % fraction of 1.25-3.15 mm. Polytherms of viscosity of colorless, green and brown container glasses, as well as sheet glass, are calculated. The possibility of using mixed cullet for obtaining composite glass-crystal facing materials is on the basis of obtained dependencies. The chemical composition of sheet and container glasses and porcelain is studied using x-ray fluorescence analysis. Optimal charge compositions have been developed to obtain glass-crystal materials with compressive strength up to 79 MPa. The technology of obtaining composite glass-ceramic facing material includes the following technological operations: milling of glass breakage; grinding cullet of porcelain; drying of sodium liquid glass; the screening of crushed cullet on fractions; the grind of crushed cullet of China; grinding the dried sodium silicate glass; weighing the components in accordance with the developed formulations, the averaging of the graded cullet with fine porcelain; averaging the mixture of finely ground dried sodium silicate glass; stacking the mixture in a metal mold; compaction of the mixture in metal molds; heat treatment in a muffle furnace (sintering); extraction of facing tiles from molds; trimming the edges of the tiles with a diamond saw; quality control of finished products.

2018 ◽  
Vol 20 (26) ◽  
pp. 17624-17636 ◽  
Author(s):  
Paul C. M. Fossati ◽  
Michael J. D. Rushton ◽  
William E. Lee

Investigations of glass/crystal interfaces using atomic-scale models underlined structural changes in the glass phase as it accommodates the underlying crystal structure.


Sign in / Sign up

Export Citation Format

Share Document