Faculty Opinions recommendation of Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex.

Author(s):  
Kathleen Rockland
2006 ◽  
Vol 9 (5) ◽  
pp. 660-668 ◽  
Author(s):  
Daniela Tropea ◽  
Gabriel Kreiman ◽  
Alvin Lyckman ◽  
Sayan Mukherjee ◽  
Hongbo Yu ◽  
...  

1998 ◽  
Vol 31 ◽  
pp. S324
Author(s):  
Nobuko Mataga ◽  
Brian G. Condie ◽  
Sayaka Fujishima ◽  
Takao K. Hensch

2015 ◽  
Vol 112 (26) ◽  
pp. 8094-8099 ◽  
Author(s):  
Jamie Benoit ◽  
Albert E. Ayoub ◽  
Pasko Rakic

In contrast to the prenatal development of the cerebral cortex, when cell production, migration, and layer formation dominate, development after birth involves more subtle processes, such as activity-dependent plasticity that includes refinement of synaptic connectivity by its stabilization and elimination. In the present study, we use RNA-seq with high spatial resolution to examine differential gene expression across layers 2/3, 4, 5, and 6 of the mouse visual cortex before the onset of the critical period of plasticity [postnatal day 5 (P5)], at its peak (P26), and at the mature stage (P180) and compare it with the prefrontal association area. We find that, although genes involved in early developmental events such as cell division, neuronal migration, and axon guidance are still prominent at P5, their expression largely terminates by P26, when synaptic plasticity and associated signaling pathways become enriched. Unexpectedly, the gene expression profile was similar in both areas at this age, suggesting that activity-dependent plasticity between visual and association cortices are subject to the same genetic constraints. Although gene expression changes follow similar paths until P26, we have identified 30 regionally enriched genes that are prominent during the critical period. At P180, we identified several hundred differentially expressed gene isoforms despite subsiding levels of gene expression differences. This result indicates that, once genetic developmental programs cease, the remaining morphogenetic processes may depend on posttranslational events.


2009 ◽  
Vol 2 ◽  
pp. JEN.S2559 ◽  
Author(s):  
Cynthia D. Rittenhouse ◽  
Ania K Majewska

It has long been appreciated that in the visual cortex, particularly within a postnatal critical period for experience-dependent plasticity, the closure of one eye results in a shift in the responsiveness of cortical cells toward the experienced eye. While the functional aspects of this ocular dominance shift have been studied for many decades, their cortical substrates and synaptic mechanisms remain elusive. Nonetheless, it is becoming increasingly clear that ocular dominance plasticity is a complex phenomenon that appears to have an early and a late component. Early during monocular deprivation, deprived eye cortical synapses depress, while later during the deprivation open eye synapses potentiate. Here we review current literature on the cortical mechanisms of activity-dependent plasticity in the visual system during the critical period. These studies shed light on the role of activity in shaping neuronal structure and function in general and can lead to insights regarding how learning is acquired and maintained at the neuronal level during normal and pathological brain development.


Sign in / Sign up

Export Citation Format

Share Document