gaba neurons
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 50)

H-INDEX

46
(FIVE YEARS 6)

2021 ◽  
Vol 135 ◽  
pp. 105041
Author(s):  
Judith M. Swart ◽  
David R. Grattan ◽  
Sharon R. Ladyman ◽  
Rosemary S.E. Brown

Author(s):  
Dasiel O. Borroto-Escuela ◽  
Luca Ferraro ◽  
Sarah Beggiato ◽  
Manuel Narváez ◽  
Ramon Fores-Pons ◽  
...  

AbstractThe role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270–272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028–8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP61 can bind to mGluR5 and inactivate it. In addition, A2AR overexpression can lead to increased formation of A2AR-mGluR5 heterocomplexes in ventral striatal-pallidal GABA neurons. It involves enhanced facilitatory allosteric interactions leading to increased Gq-mediated mGluR5 signaling activating STEP. The involvement of both A2AR and STEP in the actions of cocaine on synaptic downregulation was also demonstrated. The enhancement of mGluR5 protomer activity by the A2AR protomer in A2AR-mGluR5 heterocomplexes in the nucleus accumbens shell appears to have a novel significant role in STEP mechanisms by both enhancing the activation of STEP and being a target for STEP61.


2021 ◽  
Author(s):  
Aiste Baleisyte ◽  
Ralf Schneggenburger ◽  
Olexiy Kochubey

Optogenetic manipulation of genetically-specified neuron populations has become a key tool in circuit neuroscience. The medial amygdala (MeA) receives pheromone information about conspecifics and has crucial functions in social behaviors; interestingly, this amygdalar structure contains a majority of GABAergic projection neurons. A previous study showed that optogenetic activation of MeA GABA neurons with channelrhodopsin-2H134R (ChR2) strongly enhanced inter-male aggression (Hong et al. 2014, Cell). When we attempted to reproduce these findings, accidentally using a faster channelrhodopsin variant (channelrhodopsin-2H134R,E123T or ChETA), we found the opposite results. We therefore systematically compared the behavioral outcome of optogenetic stimulation of MeApd GABA neurons with ChETA versus ChR2, employing two widely used AAV serotypes. This revealed that optogenetic stimulation with ChETA suppressed aggression, whereas optogenetic stimulation with ChR2 increased aggression. Recordings of membrane potential changes following optogenetic stimulation with ChETA versus ChR2 revealed larger plateau depolarizations, smaller action potential amplitudes, and larger local inhibition of neighboring inhibitory neurons with ChR2 as compared to ChETA. Our study shows that channelrhodopsin variants have to be chosen with care for in-vivo optogenetic experiments. Furthermore, the role of MeApd GABA neurons in aggression control should be re-evaluated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel C. Lowes ◽  
Linda A. Chamberlin ◽  
Lisa N. Kretsge ◽  
Emma S. Holt ◽  
Atheir I. Abbas ◽  
...  

AbstractDecreased pleasure-seeking (anhedonia) forms a core symptom of depression. Stressful experiences precipitate depression and disrupt reward-seeking, but it remains unclear how stress causes anhedonia. We recorded simultaneous neural activity across limbic brain areas as mice underwent stress and discovered a stress-induced 4 Hz oscillation in the nucleus accumbens (NAc) that predicts the degree of subsequent blunted reward-seeking. Surprisingly, while previous studies on blunted reward-seeking focused on dopamine (DA) transmission from the ventral tegmental area (VTA) to the NAc, we found that VTA GABA, but not DA, neurons mediate stress-induced blunted reward-seeking. Inhibiting VTA GABA neurons disrupts stress-induced NAc oscillations and rescues reward-seeking. By contrast, mimicking this signature of stress by stimulating NAc-projecting VTA GABA neurons at 4 Hz reproduces both oscillations and blunted reward-seeking. Finally, we find that stress disrupts VTA GABA, but not DA, neural encoding of reward anticipation. Thus, stress elicits VTA-NAc GABAergic activity that induces VTA GABA mediated blunted reward-seeking.


2021 ◽  
Author(s):  
Dipanwita Pati ◽  
Thomas L Kash

Neuroimmune signaling is increasingly identified as a critical component of various illnesses, including chronic pain, substance use disorder, and depression. However, the underlying neural mechanisms remain unclear. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), may play a key role by modulating synaptic function and long-term plasticity. The midbrain structure periaqueductal gray (PAG) plays a well-established role in pain processing, and while TNF-α inhibitors have emerged as a potential therapeutic strategy for pain-related disorders, the impact of TNF-α on PAG neuronal activity has not been thoroughly characterized. Recent studies have identified subpopulations of ventral PAG (vPAG) with opposing effects on nociception, with DA neurons driving pain relief in contrast to GABA neurons. Therefore, we used ex vivo slice physiology to examine the effects of TNF-α on neuronal activity of both subpopulations. We selectively targeted GABA and dopamine neurons using a vGAT-reporter and a TH-eGFP reporter mouse line, respectively. Following exposure to TNF-α, the intrinsic properties of GABA neurons were altered, resulting in increased excitability along with a reduction in glutamatergic synaptic drive. In DA neurons, TNF-α exposure resulted in a robust decrease in excitability along with a modest reduction in glutamatergic synaptic transmission. Furthermore, the effect of TNF-α was specific to excitatory transmission onto DA neurons as inhibitory transmission was unaltered. Collectively, these data suggest that TNF-α differentially affects the basal synaptic properties of GABA and DA neurons and enhances our understanding of how TNF-α mediated signaling modulates vPAG function.


2021 ◽  
Vol 13 ◽  
Author(s):  
Lucas B. Comeras ◽  
Noa Hörmer ◽  
Pradeepa Mohan Bethuraj ◽  
Ramon O. Tasan

Disproportionate, maladapted, and generalized fear are essential hallmarks of posttraumatic stress disorder (PTSD), which develops upon severe trauma in a subset of exposed individuals. Among the brain areas that are processing fear memories, the hippocampal formation exerts a central role linking emotional-affective with cognitive aspects. In the hippocampus, neuronal excitability is constrained by multiple GABAergic interneurons with highly specialized functions and an extensive repertoire of co-released neuromodulators. Neuropeptide Y (NPY) is one of these co-transmitters that significantly affects hippocampal signaling, with ample evidence supporting its fundamental role in emotional, cognitive, and metabolic circuitries. Here we investigated the role of NPY in relation to GABA, both released from the same interneurons of the dorsal dentate gyrus (DG), in different aspects of fear conditioning. We demonstrated that activation of dentate GABA neurons specifically during fear recall reduced cue-related as well as trace-related freezing behavior, whereas inhibition of the same neurons had no significant effects. Interestingly, concomitant overexpression of NPY in these neurons did not further modify fear recall, neither under baseline conditions nor upon chemogenetic stimulation. However, potentially increased co-release of NPY substantially reduced contextual fear, promoted extinction learning, and long-term suppression of fear in a foreground context–conditioning paradigm. Importantly, NPY in the dorsal DG was not only expressed in somatostatin neurons, but also in parvalbumin-positive basket cells and axoaxonic cells, indicating intense feedback and feedforward modulation of hippocampal signaling and precise curtailing of neuronal engrams. Thus, these findings suggest that co-release of NPY from specific interneuron populations of the dorsal DG modifies dedicated aspects of hippocampal processing by sharpening the activation of neural engrams and the consecutive fear response. Since inappropriate and generalized fear is the major impediment in the treatment of PTSD patients, the dentate NPY system may be a suitable access point to ameliorate PTSD symptoms and improve the inherent disease course.


2021 ◽  
pp. JN-RM-2039-20
Author(s):  
M.R. Farrell ◽  
J.S.D. Esteban ◽  
L. Faget ◽  
S.B. Floresco ◽  
T.S. Hnasko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document