Faculty Opinions recommendation of Decapping and decay of messenger RNA occur in cytoplasmic processing bodies.

Author(s):  
Elmar Wahle
2007 ◽  
Vol 179 (3) ◽  
pp. 437-449 ◽  
Author(s):  
Carolyn J. Decker ◽  
Daniela Teixeira ◽  
Roy Parker

Processing bodies (P-bodies) are cytoplasmic RNA granules that contain translationally repressed messenger ribonucleoproteins (mRNPs) and messenger RNA (mRNA) decay factors. The physical interactions that form the individual mRNPs within P-bodies and how those mRNPs assemble into larger P-bodies are unresolved. We identify direct protein interactions that could contribute to the formation of an mRNP complex that consists of core P-body components. Additionally, we demonstrate that the formation of P-bodies that are visible by light microscopy occurs either through Edc3p, which acts as a scaffold and cross-bridging protein, or via the “prionlike” domain in Lsm4p. Analysis of cells defective in P-body formation indicates that the concentration of translationally repressed mRNPs and decay factors into microscopically visible P-bodies is not necessary for basal control of translation repression and mRNA decay. These results suggest a stepwise model for P-body assembly with the initial formation of a core mRNA–protein complex that then aggregates through multiple specific mechanisms.


2006 ◽  
Vol 172 (6) ◽  
pp. 803-808 ◽  
Author(s):  
Paul Anderson ◽  
Nancy Kedersha

Cytoplasmic RNA granules in germ cells (polar and germinal granules), somatic cells (stress granules and processing bodies), and neurons (neuronal granules) have emerged as important players in the posttranscriptional regulation of gene expression. RNA granules contain various ribosomal subunits, translation factors, decay enzymes, helicases, scaffold proteins, and RNA-binding proteins, and they control the localization, stability, and translation of their RNA cargo. We review the relationship between different classes of these granules and discuss how spatial organization regulates messenger RNA translation/decay.


2009 ◽  
Vol 186 (3) ◽  
pp. 333-342 ◽  
Author(s):  
Ai Khim Lim ◽  
Liheng Tao ◽  
Toshie Kai

Nuage, a well-conserved perinuclear organelle found in germline cells, is thought to mediate retroelement repression in Drosophila melanogaster by regulating the production of Piwi-interacting RNAs (piRNAs). In this study, we present evidence that the nuage–piRNA pathway components can be found in cytoplasmic foci that also contain retroelement transcripts, antisense piRNAs, and proteins involved in messenger RNA (mRNA) degradation. These mRNA degradation proteins, decapping protein 1/2 (DCP1/2), Me31B (maternal expression at 31B), and pacman (PCM), are normally thought of as components of processing bodies. In spindle-E (spn-E) and aubergine (aub) mutants that lack piRNA production, piRNA pathway proteins no longer overlap the mRNA degradation proteins. Concomitantly, spn-E and aub mutant ovaries show an accumulation of full-length retroelement transcripts and prolonged stabilization of HeT-A mRNA, supporting the role of piRNAs in mediating posttranscriptional retroelement silencing. HeT-A mRNA is derepressed in mRNA degradation mutants twin, dcp1, and ski3, indicating that these enzymes also aid in removing full-length transcripts and/or decay intermediates.


2006 ◽  
Vol 174 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Mary D. Schneider ◽  
Nima Najand ◽  
Sana Chaker ◽  
Justin M. Pare ◽  
Julie Haskins ◽  
...  

In mammalian cells, the GW182 protein localizes to cytoplasmic bodies implicated in the regulation of messenger RNA (mRNA) stability, translation, and the RNA interference pathway. Many of these functions have also been assigned to analogous yeast cytoplasmic mRNA processing bodies. We have characterized the single Drosophila melanogaster homologue of the human GW182 protein family, which we have named Gawky (GW). Drosophila GW localizes to punctate, cytoplasmic foci in an RNA-dependent manner. Drosophila GW bodies (GWBs) appear to function analogously to human GWBs, as human GW182 colocalizes with GW when expressed in Drosophila cells. The RNA-induced silencing complex component Argonaute2 and orthologues of LSm4 and Xrn1 (Pacman) associated with 5′–3′ mRNA degradation localize to some GWBs. Reducing GW activity by mutation or antibody injection during syncytial embryo development leads to abnormal nuclear divisions, demonstrating an early requirement for GWB-mediated cytoplasmic mRNA regulation. This suggests that gw represents a previously unknown member of a small group of genes that need to be expressed zygotically during early embryo development.


Sign in / Sign up

Export Citation Format

Share Document