cytoplasmic rna
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 61)

H-INDEX

58
(FIVE YEARS 5)

RNA ◽  
2022 ◽  
pp. rna.079016.121
Author(s):  
Chi-Ping Chan ◽  
Dong-Yan Jin

Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to the new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bo Sun ◽  
Xianyu Zheng ◽  
Weilong Ye ◽  
Pengcheng Zhao ◽  
Guowu Ma

Objectives. The aim of this research was to uncover the biological role and mechanisms of LINC01303 in oral squamous cell carcinoma (OSCC). Materials and Methods. Real-time quantitative PCR (qRT-PCR) was used to determine LINC01303 expression in OSCC tissues. Subcellular distribution of LINC01303 was examined by nuclear/cytoplasmic RNA fractionation and FISH experiments. The role of LINC01303 in the growth of TSCCA and SCC-25 was examined by CCK-8 assay, colony formation, transwell invasion assay in vitro, and xenograft tumor experiment in vivo. Dual-luciferase reporter assay was used to verify the interaction between LINC01303 and miR-429. RNA pull‐down assay was used to discover miR-429‐interacted protein, which was further examined by qRT-PCR, western blot, and rescue experiments. Results. LINC01303 expression was higher in OSCC tissues compared with adjacent nontumor tissues. LINC01303 was found to be localized in the cytoplasm of OSCC cells. Knockdown of LINC01303 inhibited OSCC cell proliferation and invasion, whereas increasing the expression of LINC01303 showed the opposite effects. Furthermore, LINC01303 served as a miR-429 “sponge” and positively regulated ZEB1 expression. Moreover, LINC01303 promoted OSCC through miR-429/ZEB1 axis both in vivo and in vitro. Conclusions. LINC01303 plays an oncogenic role in OSCC and is a promising biomarker for OSCC patients.


2021 ◽  
Author(s):  
Xiaoming Zhou ◽  
Lily Sumrow ◽  
Lillian Sutherland ◽  
Daifei Liu ◽  
Tian Qin ◽  
...  

AbstractTAR binding protein 43 (TDP-43) is an RNA binding protein that assists in the maturation, export and sub-cellular localization of mRNA. The carboxyl terminal 153 residues of TDP-43 are of low sequence complexity and allow for self-association of the protein in a manner leading to its phase separation from an aqueous environment. These interactions assist TDP-43 in forming cytoplasmic RNA granules involved in the transport of mRNA for localized translation. Self-association of the TDP-43 low complexity (LC) domain is facilitated by a region of twenty five residues that are of extreme evolutionary conservation. The molecular basis for self-adherence of the protein through this region has been illuminated by a combination of structural and biochemical studies, allowing definition of a morphologically specific cross-β structure predicted to be weakly assembled by main chain hydrogen bonds. In this study we have investigated the importance of individual, Pauling hydrogen bonds hypothesized to facilitate self-adherence of the TDP-43 LC domain.


RNA Biology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Yuyan Liao ◽  
Chenghao Kuang ◽  
Zheng Bao ◽  
Yijing He ◽  
Long Gu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (11) ◽  
pp. e1010070
Author(s):  
Bin-yan Liu ◽  
Xue-jie Yu ◽  
Chuan-min Zhou

Nuclear scaffold attachment factor A (SAFA) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS with a high fatality rate of up to 30%. It remains elusive whether and how cytoplasmic SFTSV can be sensed by the RNA sensor SAFA. Here, we demonstrated that SAFA was able to detect SFTSV infection and mediate antiviral interferon and inflammatory responses. Transcription and expression levels of SAFA were strikingly upregulated under SFTSV infection. SAFA was retained in the cytoplasm by interaction with SFTSV nucleocapsid protein (NP). Importantly, SFTSV genomic RNA was recognized by cytoplasmic SAFA, which recruited and promoted activation of the STING-TBK1 signaling axis against SFTSV infection. Of note, the nuclear localization signal (NLS) domain of SAFA was important for interaction with SFTSV NP and recognition of SFTSV RNA in the cytoplasm. In conclusion, our study reveals a novel antiviral mechanism in which SAFA functions as a novel cytoplasmic RNA sensor that directly recognizes RNA virus SFTSV and mediates an antiviral response.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Harsh Chhajer ◽  
Vaseef A. Rizvi ◽  
Rahul Roy

Life cycle processes of positive-strand (+)RNA viruses are broadly conserved across families, yet they employ different strategies to grow in the cell. Using a generalized dynamical model for intracellular (+)RNA virus growth, we decipher these life cycle determinants and their dependencies for several viruses and parse the effects of viral mutations, drugs and host cell permissivity. We show that poliovirus employs rapid replication and virus assembly, whereas the Japanese encephalitis virus leverages its higher rate of translation and efficient cellular reorganization compared to the hepatitis C virus. Stochastic simulations demonstrate infection extinction if all seeding (inoculating) viral RNA degrade before establishing robust replication critical for infection. The probability of this productive cellular infection, ‘cellular infectivity’, is affected by virus–host processes and defined by early life cycle events and viral seeding. An increase in cytoplasmic RNA degradation and delay in vesicular compartment formation reduces infectivity, more so when combined. Synergy among these parameters in limiting (+)RNA virus infection as predicted by our model suggests new avenues for inhibiting infections by targeting the early life cycle bottlenecks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kaiwen Wang ◽  
Jiangfeng Zhao ◽  
Wanlong Wu ◽  
Wenwen Xu ◽  
Shuhui Sun ◽  
...  

ObjectiveAnti-melanoma differentiation-associated gene 5 (MDA5) autoantibody is a distinctive serology hallmark of dermatomyositis (DM). As an autoantigen, MDA5 is a cytoplasmic RNA recognition receptor. The aim of this study was to address the question of whether the RNA-containing immune complex (IC) formed by MDA5 and anti-MDA5 could activate type I interferon (IFN) response.MethodPatients with anti-MDA5+ DM (n = 217), anti-MDA5− DM (n = 68), anti-synthase syndrome (ASyS, n = 57), systemic lupus erythematosus (SLE, n = 245), rheumatoid arthritis (RA, n = 89), and systemic sclerosis (SSc, n = 30) and healthy donors (HD, n = 94) were enrolled in our studies. Anti-MDA5 antibody was detected by line blotting, enzyme-linked immunosorbent assay (ELISA), immunoprecipitation, and Western blotting. Cytokine profiling was determined by multiplex flow cytometry, and IFN-α was further measured by ELISA. Type I IFN-inducible genes were detected by quantitative PCR (qPCR). RNA–IC binding was analyzed by RNA immunoprecipitation. Plasmacytoid dendritic cells (pDCs) derived from healthy donors were cultivated and stimulated with MDA5 ICs with or without RNase and Toll-like receptor 7 (TLR-7) agonist. The interaction between MDA5 ICs and TLR7 was evaluated by immunoprecipitation and confocal microscopy.ResultsAccording to our in-house ELISA, the presence of anti-MDA5 antibody in 76.1% of DM patients, along with 14.3% of SLE patients who had a lower titer yet positive anti-MDA5 antibody, was related to the high level of peripheral IFN-α. ICs formed by MDA5 and anti-MDA5 were potent inducers of IFN-α via TLR-7 in an RNA-dependent manner in vitro.ConclusionOur data provided evidence of the mechanistic relevance between the anti-MDA5 antibody and type I IFN pathway.


2021 ◽  
Author(s):  
Vladimir Majerciak ◽  
Tongqing Zhou ◽  
Zhi-Ming Zheng

Two prominent cytoplasmic RNA granules, ubiquitous RNA-processing bodies (PB) and inducible stress granules (SG), regulate storage of translationally arrested mRNAs and are intimately related. In this study, we found the dependence of SG formation on PB in the cells under arsenite (ARS) stress, but not the other way around. GW182, 4E-T and DDX6 essential for PB formation differentially affect SG formation in the cells under ARS stress, with DDX6 being the most prominent. The cells with DDX6 deficiency display irregular shape of SG which could be rescued by ectopic wt DDX6, but not its helicase mutant E247A DDX6, which induces SG in the cells without stress, indicating that DDX6 helicase activity is essential for PB, but suppressive for SG. DDX6's dual roles are independent of DDX6 interactors EDC3, CNOT1, and PAT1B. This study provides a conceptual advance of how DDX6 involves in the biogenesis of PB and SG.


Sign in / Sign up

Export Citation Format

Share Document