Faculty Opinions recommendation of Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS.

Author(s):  
Robert Dutnall
2004 ◽  
Vol 16 (6) ◽  
pp. 955-965 ◽  
Author(s):  
Hubert Kettenberger ◽  
Karim-Jean Armache ◽  
Patrick Cramer

2021 ◽  
Author(s):  
Ying Chen ◽  
Seychelle M. Vos ◽  
Christian Dienemann ◽  
Momchil Ninov ◽  
Henning Urlaub ◽  
...  

1993 ◽  
Vol 21 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Gretchen A. Rice ◽  
Michael J. Chamberlin ◽  
Caroline M. Kane

2011 ◽  
Vol 434 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Yong Zhang ◽  
Mengmeng Zhang ◽  
Yan Zhang

Reversible phosphorylation of the CTD (C-terminal domain) of the eukaryotic RNA polymerase II largest subunit represents a critical regulatory mechanism during the transcription cycle and mRNA processing. Ssu72 is an essential phosphatase conserved in eukaryotes that dephosphorylates phosphorylated Ser5 of the CTD heptapeptide. Its function is implicated in transcription initiation, elongation and termination, as well as RNA processing. In the present paper we report the high resolution X-ray crystal structures of Drosophila melanogaster Ssu72 phosphatase in the apo form and in complex with an inhibitor mimicking the transition state of phosphoryl transfer. Ssu72 facilitates dephosphorylation of the substrate through a phosphoryl-enzyme intermediate, as visualized in the complex structure of Ssu72 with the oxo-anion compound inhibitor vanadate at a 2.35 Å (1 Å=0.1 nm) resolution. The structure resembles the transition state of the phosphoryl transfer with vanadate exhibiting a trigonal bi-pyramidal geometry covalently bonded to the nucleophilic cysteine residue. Interestingly, the incorporation of oxo-anion compounds greatly stabilizes a flexible loop containing the general acid, as detected by an increase of melting temperature of Ssu72 detected by differential scanning fluorimetry. The Ssu72 structure exhibits a core fold with a similar topology to that of LMWPTPs [low-molecular-mass PTPs (protein tyrosine phosphatases)], but with an insertion of a unique ‘cap’ domain to shelter the active site from the solvent with a deep groove in between where the CTD substrates bind. Mutagenesis studies in this groove established the functional roles of five residues (Met17, Pro46, Asp51, Tyr77 and Met85) that are essential specifically for substrate recognition.


Science ◽  
2017 ◽  
Vol 357 (6354) ◽  
pp. 921-924 ◽  
Author(s):  
Haruhiko Ehara ◽  
Takeshi Yokoyama ◽  
Hideki Shigematsu ◽  
Shigeyuki Yokoyama ◽  
Mikako Shirouzu ◽  
...  

2009 ◽  
Vol 37 (17) ◽  
pp. 5803-5809 ◽  
Author(s):  
Joanna Andrecka ◽  
Barbara Treutlein ◽  
Maria Angeles Izquierdo Arcusa ◽  
Adam Muschielok ◽  
Robert Lewis ◽  
...  

1991 ◽  
Vol 11 (3) ◽  
pp. 1195-1206 ◽  
Author(s):  
E Bengal ◽  
O Flores ◽  
A Krauskopf ◽  
D Reinberg ◽  
Y Aloni

We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.


Sign in / Sign up

Export Citation Format

Share Document