transcription complexes
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 47)

H-INDEX

59
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2002
Author(s):  
Jennifer Redington ◽  
Jaigeeth Deveryshetty ◽  
Lakshmi Kanikkannan ◽  
Ian Miller ◽  
Sergey Korolev

The tumor suppressor protein partner and localizer of BRCA2 (PALB2) orchestrates the interactions between breast cancer susceptibility proteins 1 and 2 (BRCA1, -2) that are critical for genome stability, homologous recombination (HR) and DNA repair. PALB2 mutations predispose patients to a spectrum of cancers, including breast and ovarian cancers. PALB2 localizes HR machinery to chromatin and links it with transcription through multiple DNA and protein interactions. This includes its interaction with MRG15 (Morf-related gene on chromosome 15), which is part of many transcription complexes, including the HAT-associated and the HDAC-associated complexes. This interaction is critical for PALB2 localization in actively transcribed genes, where transcription/replication conflicts lead to frequent replication stress and DNA breaks. We solved the crystal structure of the MRG15 MRG domain bound to the PALB2 peptide and investigated the effect of several PALB2 mutations, including patient-derived variants. PALB2 interacts with an extended surface of the MRG that is known to interact with other proteins. This, together with a nanomolar affinity, suggests that the binding of MRG15 partners, including PALB2, to this region is mutually exclusive. Breast cancer-related mutations of PALB2 cause only minor attenuation of the binding affinity. New data reveal the mechanism of PALB2-MRG15 binding, advancing our understanding of PALB2 function in chromosome maintenance and tumorigenesis.


2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Ilias Skeparnias ◽  
Jinwei Zhang

Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.


Author(s):  
David M. Wood ◽  
Renwick C.J. Dobson ◽  
Christopher R. Horne

Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the ‘resolution revolution’ of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010056
Author(s):  
Krista Fleck ◽  
Malorie Nitz ◽  
Victoria Jeffers

Protozoan parasites continue to cause a significant health and economic burden worldwide. As infectious organisms, they pose unique and difficult challenges due to a level of conservation of critical eukaryotic cellular pathways with their hosts. Gene regulation has been pinpointed as an essential pathway with enough divergence to warrant investigation into therapeutically targeting. Examination of human parasites such as Plasmodium falciparum, Toxoplasma gondii, and kinetoplastids have revealed that epigenetic mechanisms play a key role in their gene regulation. The enzymes involved in adding and removing epigenetic posttranslational modifications (PTMs) have historically been the focus of study. However, the reader proteins that recognize and bind PTMs, initiating recruitment of chromatin-modifying and transcription complexes, are now being realized for their critical role in regulation and their potential as drug targets. In this review, we highlight the current knowledge on epigenetic reader proteins in model parasitic protozoa, focusing on the histone acyl- and methyl-reading domains. With this knowledge base, we compare differences between medically relevant parasites, discuss conceivable functions of these understudied proteins, indicate gaps in knowledge, and provide current progress in drug development.


2021 ◽  
pp. 2103669
Author(s):  
Min Hao ◽  
Fuzhou Ye ◽  
Milija Jovanovic ◽  
Ioly Kotta‐Loizou ◽  
Qingqing Xu ◽  
...  

Transcription ◽  
2021 ◽  
pp. 1-30
Author(s):  
Nelly Said ◽  
Markus C. Wahl

2021 ◽  
Vol 17 (10) ◽  
pp. e1010002
Author(s):  
Simone Bach ◽  
Jana-Christin Demper ◽  
Paul Klemm ◽  
Julia Schlereth ◽  
Marcus Lechner ◽  
...  

Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome’s very 3’-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60–80. LeaderRNA synthesis requires hexamer phasing in the 3’-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3’-leader promoter. We further found different genomic 3’-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3’-leader promoter, i.e., at the second nucleotide of the genome 3’-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus.


2021 ◽  
Author(s):  
Benjamin Spector ◽  
Mrutyunjaya Parida ◽  
Christopher Ball ◽  
Ming Li ◽  
Jeffrey Meier ◽  
...  

Abstract Interactions of the RNA polymerase II (Pol II) preinitiation complex (PIC) and paused early elongation complexes with the first downstream (+1) nucleosome are thought to be functionally important. However, current methods are limited for investigating these relationships, both for cellular chromatin and the human cytomegalovirus (HCMV) genome. Digestion with human DNA fragmentation factor (DFF) before immunoprecipitation (DFF-ChIP) precisely revealed both similarities and major differences in PICs driven by TBP on the host genome in comparison with PICs driven by TBP or the viral-specific, late initiation factor UL87 on the viral genome. Host PICs and paused Pol II complexes are frequently found in contact with the +1 nucleosome and paused Pol II can also be found in a complex involved in the initial invasion of the +1 nucleosome. In contrast, viral transcription complexes have very limited nucleosomal interactions, reflecting a relative lack of chromatinization of transcriptionally active regions of HCMV genomes.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Laurel Coons ◽  
Kenneth S. Korach

Estrogen receptor (ER) activity regulates diverse physiological processes via transcriptional modulation of target genes [1]. The selection of target genes and the magnitude of the response, be it induction or repression, are determined by many factors, including the effect of the hormone ligand and DNA binding on ER structural conformation, and the local cellular regulatory environment. The cellular environment defines the specific complement of DNA enhancer and promoter elements present and the availability of coregulators to form functional transcription complexes. Together, these determinants control the resulting biological response.


Sign in / Sign up

Export Citation Format

Share Document