Faculty Opinions recommendation of Polo kinase controls cell-cycle-dependent transcription by targeting a coactivator protein.

Author(s):  
Jürg Bahler
Nature ◽  
2006 ◽  
Vol 444 (7118) ◽  
pp. 494-498 ◽  
Author(s):  
Zoulfia Darieva ◽  
Richard Bulmer ◽  
Aline Pic-Taylor ◽  
Kathryn S. Doris ◽  
Marco Geymonat ◽  
...  

2017 ◽  
Vol 28 (11) ◽  
pp. 1435-1443
Author(s):  
Lotti Brose ◽  
Justin Crest ◽  
Li Tao ◽  
William Sullivan

Animal cytokinesis involves both actin-myosin–based contraction and vesicle-mediated membrane addition. In many cell types, including early Drosophila embryos, Nuf/FIP3, a Rab11 effector, mediates recycling endosome (RE)–based vesicle delivery to the cytokinesis furrow. Nuf exhibits a cell cycle–regulated concentration at the centrosome that is accompanied by dramatic changes in its phosphorylation state. Here we demonstrate that maximal phosphorylation of Nuf occurs at prophase, when centrosome-associated Nuf disperses throughout the cytoplasm. Accordingly, ectopic Cdk1 activation results in immediate Nuf dispersal from the centrosome. Screening of candidate kinases reveals a specific, dosage-sensitive interaction between Nuf and Polo with respect to Nuf-mediated furrow formation. Inhibiting Polo activity results in Nuf underphosphorylation and prolonged centrosome association. In vitro, Polo directly binds and is required for Nuf phosphorylation at Ser-225 and Thr-227, matching previous in vivo–mapped phosphorylation sites. These results demonstrate a role for Polo kinase in directly mediating Nuf cell cycle–dependent localization.


1987 ◽  
Vol 116 (3_Suppl) ◽  
pp. S81
Author(s):  
U. VETTER ◽  
W. HARTMANN ◽  
H. HITZLER ◽  
W. HEIT ◽  
J. SCHLICKENRIEDER ◽  
...  

1988 ◽  
Vol 179 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Robert P. Wersto ◽  
Fritz Herz ◽  
Robert E. Gallagher ◽  
Leopold G. Koss

Sign in / Sign up

Export Citation Format

Share Document