Faculty Opinions recommendation of A transforming mutation in the pleckstrin homology domain of AKT1 in cancer.

Author(s):  
Marsha Rosner
2007 ◽  
Vol 282 (40) ◽  
pp. 29201-29210 ◽  
Author(s):  
Rafael J. Rojas ◽  
Marielle E. Yohe ◽  
Svetlana Gershburg ◽  
Takeharu Kawano ◽  
Tohru Kozasa ◽  
...  

Biochemistry ◽  
1995 ◽  
Vol 34 (31) ◽  
pp. 9859-9864 ◽  
Author(s):  
John E. Harlan ◽  
Ho Sup Yoon ◽  
Philip J. Hajduk ◽  
Stephen W. Fesik

2005 ◽  
Vol 25 (12) ◽  
pp. 5106-5118 ◽  
Author(s):  
Kausik Chakrabarti ◽  
Rong Lin ◽  
Noraisha I. Schiller ◽  
Yanping Wang ◽  
David Koubi ◽  
...  

ABSTRACT Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. Furthermore, elevated Kalirin expression resulted in catalytic activation of TrkA, as demonstrated by in vitro kinase assays and increased NGF-stimulated cellular activation of Rac, Mek, and CREB. Domain mapping demonstrated that the N-terminal Kalirin pleckstrin homology domain mediates the interaction with TrkA. The effects of Kalirin on TrkA provide a molecular basis for the requirement of Kalirin in process extension from PC12 cells and for previously observed effects on axonal extension and dendritic maintenance. The interaction of TrkA with the pleckstrin homology domain of Kalirin may be one example of a general mechanism whereby receptor/Rho GEF pairings play an important role in receptor tyrosine kinase activation and signal transduction.


2000 ◽  
Vol 351 (1) ◽  
pp. 19 ◽  
Author(s):  
Simon DOWLER ◽  
Richard A. CURRIE ◽  
David G. CAMPBELL ◽  
Maria DEAK ◽  
Gursant KULAR ◽  
...  

1995 ◽  
Vol 108 (11) ◽  
pp. 3569-3579
Author(s):  
E. Dellambra ◽  
M. Patrone ◽  
B. Sparatore ◽  
A. Negri ◽  
F. Ceciliani ◽  
...  

The intrinsic signal(s) responsible for the onset of human keratinocyte terminal differentiation is not yet fully understood. Evidence has been recently accumulated linking the phospholipase-mediated activation of protein kinase C to the coordinate changes in gene expression occurring during keratinocyte terminal differentiation. Here we report the purification of a keratinocyte-derived protein enhancing protein kinase C enzymatic activity. The stimulator eluted as a peak with estimated molecular mass of approximately 70 kDa, while analysis by SDS-PAGE showed a 30 kDa protein migrating as a distinct doublet, suggesting the formation of a 30 kDa homodimer. The amino acid sequence analysis allowed the unambigous identification of the protein kinase C stimulator as a mixture of the highly homologous sigma (stratifin) and zeta isoforms of 14–3-3 proteins, which are homodimers of identical 30 kDa subunits. Mono Q anion exchange chromatography and immunoblot analysis further confirmed that stratifin enhances protein kinase C activity. Stratifin was originally sequenced from a human keratinocyte protein database, but its function was unknown. The pleckstrin homology domain has been recently related to protein translocation to the cell membrane as well as to functional interactions of intracellular proteins involved in signal transduction. We show here that stratifin (and 14–3-3 zeta) harbors a pleckstrin homology domain, and the consequent functional implications will be discussed.


Sign in / Sign up

Export Citation Format

Share Document