Faculty Opinions recommendation of Cysteine redox sensor in PKGIa enables oxidant-induced activation.

Author(s):  
Harald HHW Schmidt
Keyword(s):  
2018 ◽  
Vol 138 (4) ◽  
pp. 159-163 ◽  
Author(s):  
Sou Takahashi ◽  
Ippei Akita ◽  
Kazuhiro Takahashi ◽  
Tatsuya Iwata ◽  
Kazuaki Sawada
Keyword(s):  

Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 66
Author(s):  
Alisa A. Vologzhannikova ◽  
Polina A. Khorn ◽  
Marina P. Shevelyova ◽  
Alexei S. Kazakov ◽  
Victor I. Emelyanenko ◽  
...  

Oncomodulin (Ocm), or parvalbumin β, is an 11–12 kDa Ca2+-binding protein found inside and outside of vertebrate cells, which regulates numerous processes via poorly understood mechanisms. Ocm consists of two active Ca2+-specific domains of the EF-hand type (“helix-loop-helix” motif), covered by an EF-hand domain with inactive EF-hand loop, which contains a highly conservative cysteine with unknown function. In this study, we have explored peculiarities of the microenvironment of the conservative Cys18 of recombinant rat Ocm (rWT Ocm), redox properties of this residue, and structural/functional sensitivity of rWT Ocm to the homologous C18S substitution. We have found that pKa of the Cys18 thiol lays beyond the physiological pH range. The measurement of redox dependence of rWT Ocm thiol–disulfide equilibrium (glutathione redox pair) showed that redox potential of Cys18 for the metal-free and Ca2+-loaded protein is of −168 mV and −176 mV, respectively. Therefore, the conservative thiol of rWT Ocm is prone to disulfide dimerization under physiological redox conditions. The C18S substitution drastically reduces α-helices content of the metal-free and Mg2+-bound Ocm, increases solvent accessibility of its hydrophobic residues, eliminates the cooperative thermal transition in the apo-protein, suppresses Ca2+/Mg2+ affinity of the EF site, and accelerates Ca2+ dissociation from Ocm. The distinct structural and functional consequences of the minor structural modification of Cys18 indicate its possible redox sensory function. Since some other EF-hand proteins also contain a conservative redox-sensitive cysteine located in an inactive EF-hand loop, it is reasonable to suggest that in the course of evolution, some of the EF-hands attained redox sensitivity at the expense of the loss of their Ca2+ affinity.


2007 ◽  
Vol 104 (28) ◽  
pp. 11568-11573 ◽  
Author(s):  
A. Kumar ◽  
J. C. Toledo ◽  
R. P. Patel ◽  
J. R. Lancaster ◽  
A. J. C. Steyn

Biochemistry ◽  
2007 ◽  
Vol 46 (12) ◽  
pp. 3614-3623 ◽  
Author(s):  
Jason Key ◽  
Marco Hefti ◽  
Erin B. Purcell ◽  
Keith Moffat

2021 ◽  
Vol 12 ◽  
Author(s):  
Andonis Karachitos ◽  
Wojciech Grabiński ◽  
Martyna Baranek ◽  
Hanna Kmita

Voltage-dependent anion-selective channel (VDAC) allows the exchange of small metabolites and inorganic ions across the mitochondrial outer membrane. It is involved in complex interactions that regulate mitochondrial and cellular functioning. Many organisms have several VDAC paralogs that play distinct but poorly understood roles in the life and death of cells. It is assumed that such a large diversity of VDAC-encoding genes might cause physiological plasticity to cope with abiotic and biotic stresses known to impact mitochondrial function. Moreover, cysteine residues in mammalian VDAC paralogs may contribute to the reduction–oxidation (redox) sensor function based on disulfide bond formation and elimination, resulting in redox-sensitive VDAC (rsVDAC). Therefore, we analyzed whether rsVDAC is possible when only one VDAC variant is present in mitochondria and whether all VDAC paralogs present in mitochondria could be rsVDAC, using representatives of currently available VDAC amino acid sequences. The obtained results indicate that rsVDAC can occur when only one VDAC variant is present in mitochondria; however, the possibility of all VDAC paralogs in mitochondria being rsVDAC is very low. Moreover, the presence of rsVDAC may correlate with habitat conditions as rsVDAC appears to be prevalent in parasites. Thus, the channel may mediate detection and adaptation to environmental conditions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Matthew CW Oswald ◽  
Paul S Brooks ◽  
Maarten F Zwart ◽  
Amrita Mukherjee ◽  
Ryan JH West ◽  
...  

Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson’s disease-linked protein DJ-1β as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.


2022 ◽  
Author(s):  
Zhao Huang ◽  
Li Zhou ◽  
Jiufei Duan ◽  
Siyuan Qin ◽  
Yu Wang ◽  
...  

Abstract Loss of E-cadherin (ECAD), often caused by epigenetic inactivation, is closely associated with tumor metastasis. However, how ECAD is regulated in response to oxidative stress during tumorigenesis is largely unknown. Here we identify RNF25 as a new E3 ligase of ECAD, whose activation by oxidative stress leads to ECAD protein degradation in hepatocellular carcinoma (HCC). Loss of ECAD activates YAP, which in turn promotes the transcription of RNF25, thus forming a positive feedback loop to sustain the ECAD downregulation. YAP activation mitigates oxidative stress in detached HCC cells by upregulating antioxidant genes, protecting detached HCC cells from ferroptosis, resulting in anoikis resistance. Mechanistically, we found that protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344, which increases its kinase activity towards RNF25 phosphorylation at Ser450, facilitating RNF25-mediated degradation of ECAD. Moreover, RNF25 expression is associated with HCC metastasis and depletion of RNF25 is sufficient to diminish HCC invasion and metastasis in vitro and in vivo. Together, these results identify a dual role of RNF25 as a critical regulator of ECAD protein turnover, promoting both anoikis resistance and metastasis, and PKA is a necessary redox sensor to enable this process. Our study provides mechanistic insight into how tumor cells sense oxidative stress signals to spread while escaping cell death.


2013 ◽  
Vol 288 (25) ◽  
pp. 18458-18472 ◽  
Author(s):  
Bastian Molitor ◽  
Marc Stassen ◽  
Anuja Modi ◽  
Samir F. El-Mashtoly ◽  
Christoph Laurich ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document