Faculty Opinions recommendation of The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis.

Author(s):  
Meenakshisundaram Ananthanarayanan
2008 ◽  
Vol 105 (10) ◽  
pp. 3891-3896 ◽  
Author(s):  
A. Rao ◽  
J. Haywood ◽  
A. L. Craddock ◽  
M. G. Belinsky ◽  
G. D. Kruh ◽  
...  

2020 ◽  
Vol 176 (1) ◽  
pp. 34-45 ◽  
Author(s):  
James J Beaudoin ◽  
Jacqueline Bezençon ◽  
Noora Sjöstedt ◽  
John K Fallon ◽  
Kim L R Brouwer

Abstract Organic solute transporter (OST) α/β is a key bile acid transporter expressed in various organs, including the liver under cholestatic conditions. However, little is known about the involvement of OSTα/β in bile acid-mediated drug-induced liver injury (DILI), a major safety concern in drug development. This study investigated whether OSTα/β preferentially transports more hepatotoxic, conjugated, primary bile acids and to what extent xenobiotics inhibit this transport. Kinetic studies with OSTα/β-overexpressing cells revealed that OSTα/β preferentially transported bile acids in the following order: taurochenodeoxycholate > glycochenodeoxycholate > taurocholate > glycocholate. The apparent half-maximal inhibitory concentrations for OSTα/β-mediated bile acid (5 µM) transport inhibition by fidaxomicin, troglitazone sulfate, and ethinyl estradiol were: 210, 334, and 1050 µM, respectively, for taurochenodeoxycholate; 97.6, 333, and 337 µM, respectively, for glycochenodeoxycholate; 140, 265, and 527 µM, respectively, for taurocholate; 59.8, 102, and 117 µM, respectively, for glycocholate. The potential role of OSTα/β in hepatocellular glycine-conjugated bile acid accumulation and cholestatic DILI was evaluated using sandwich-cultured human hepatocytes (SCHH). Treatment of SCHH with the farnesoid X receptor agonist chenodeoxycholate (100 µM) resulted in substantial OSTα/β induction, among other proteomic alterations, reducing glycochenodeoxycholate and glycocholate accumulation in cells+bile 4.0- and 4.5-fold, respectively. Treatment of SCHH with troglitazone and fidaxomicin together under cholestatic conditions resulted in increased hepatocellular toxicity compared with either compound alone, suggesting that OSTα/β inhibition may accentuate DILI. In conclusion, this study provides insights into the role of OSTα/β in preferential disposition of bile acids associated with hepatotoxicity, the impact of xenobiotics on OSTα/β-mediated bile acid transport, and the role of this transporter in SCHH and cholestatic DILI.


2016 ◽  
Vol 150 (4) ◽  
pp. S1020
Author(s):  
Courtney B. Ferrebee ◽  
Anuradha Rao ◽  
Jamie Haywood ◽  
Kim Pachura ◽  
Paul A. Dawson

2006 ◽  
Vol 290 (3) ◽  
pp. G476-G485 ◽  
Author(s):  
Jean-François Landrier ◽  
Jyrki J. Eloranta ◽  
Stephan R. Vavricka ◽  
Gerd A. Kullak-Ublick

Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTα/OSTβ. Although the transport function of OSTα/OSTβ has been characterized, little is known about the regulation of its expression. We show here that human OSTα/OSTβ expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTα and OSTβ in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTα or OSTβ promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTα gene and one in the OSTβ gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTα/OSTβ complex are induced by bile acids and FXR. By coordinated control of OSTα/OSTβ expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.


Sign in / Sign up

Export Citation Format

Share Document