Faculty Opinions recommendation of Stress acts cumulatively to precipitate Alzheimer's disease-like tau pathology and cognitive deficits.

Author(s):  
E Ronald de Kloet
2019 ◽  
Vol 22 (3) ◽  
pp. 401-412 ◽  
Author(s):  
Evandro F. Fang ◽  
Yujun Hou ◽  
Konstantinos Palikaras ◽  
Bryan A. Adriaanse ◽  
Jesse S. Kerr ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maurits Johansson ◽  
Erik Stomrud ◽  
Philip S. Insel ◽  
Antoine Leuzy ◽  
Per Mårten Johansson ◽  
...  

AbstractMild behavioral impairment (MBI) is suggested as risk marker for neurodegenerative diseases, such as Alzheimer’s disease (AD). Recently, pathologic tau deposition in the brain has been shown closely related to clinical manifestations, such as cognitive deficits. Yet, associations between tau pathology and MBI have rarely been investigated. It is further debated if MBI precedes cognitive deficits in AD. Here, we explored potential mechanisms by which MBI is related to AD, this by studying associations between MBI and tau in preclinical AD. In all, 50 amyloid-β-positive cognitively unimpaired subjects (part of the BioFINDER-2 study) underwent MBI-checklist (MBI-C) to assess MBI, and the Alzheimer’s Disease Assessment Scale – Cognitive subscale (ADAS-Cog) delayed word recall (ADAS-DR) to assess episodic memory. Early tau pathology was determined using tau-PET ([18F]RO948 retention in entorhinal cortex/hippocampus) and cerebrospinal fluid (CSF) P-tau181. Regression models were used to test for associations. We found that higher tau-PET signal in the entorhinal cortex/hippocampus and CSF P-tau181 levels were associated with higher MBI-C scores (β = 0.010, SE = 0.003, p = 0.003 and β = 1.263, SE = 0.446, p = 0.007, respectively). When MBI-C and ADAS-DR were entered together in the regression models, tau-PET (β = 0.009, p = 0.009) and CSF P-tau181 (β = 0.408, p = 0.006) were predicted by MBI-C, but not ADAS-DR. We conclude that in preclinical AD, MBI is associated with tau independently from memory deficits. This denotes MBI as an important early clinical manifestation related to tau pathology in AD.


Author(s):  
Denise Visser ◽  
Sander C. J. Verfaillie ◽  
Emma E. Wolters ◽  
Emma M. Coomans ◽  
Tessa Timmers ◽  
...  

Abstract Purpose Early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD. Methods Seventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n = 35, age-at-PET = 59 ± 5, MMSE = 23 ± 4; LOAD: n = 44, age-at-PET = 71 ± 5, MMSE = 23 ± 4) underwent a 130-min dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital, and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language, and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition. Results Both region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipitoparietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND − 0.76 ≤ stβ ≤  − 0.48 vs LOAD − 0.18 ≤ stβ ≤  − 0.02; EOAD R1 0.37 ≤ stβ ≤ 0.84 vs LOAD − 0.25 ≤ stβ ≤ 0.16). Conclusions Compared to LOAD, the degree of lateral temporal and occipitoparietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD.


2021 ◽  
Author(s):  
Laura Trujillo-Estrada ◽  
Peter W. Vanderklish ◽  
Marie Minh Thu Nguyen ◽  
Run Rong Kuang ◽  
Caroline Nguyen ◽  
...  

AbstractAlzheimer’s disease (AD) is conceptualized as a synaptic failure disorder in which loss of glutamatergic synapses is a major driver of cognitive decline. Thus, novel therapeutic strategies aimed at regenerating synapses may represent a promising approach to mitigate cognitive deficits in AD patients. At present, no disease-modifying drugs exist for AD, and approved therapies are palliative at best, lacking in the ability to reverse the synaptic failure. Here, we tested the efficacy of a novel synaptogenic small molecule, SPG302 — a 3rd-generation benzothiazole derivative that increases the density of axospinous glutamatergic synapses — in 3xTg-AD mice. Daily dosing of 3xTg-AD mice with SPG302 at 3 and 30 mg/kg (i.p.) for 4 weeks restored hippocampal synaptic density and improved cognitive function in hippocampal-dependent tasks. Mushroom and stubby spine profiles were increased by SPG302, and associated with enhanced expression of key postsynaptic proteins — including postsynaptic density protein 95 (PSD95), drebrin, and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) — and increased colocalization of PSD95 with synaptophysin. Notably, SPG302 proved efficacious in this model without modifying Aβ and tau pathology. Thus, our study provides preclinical support for the idea that compounds capable of restoring synaptic density offer a viable strategy to reverse cognitive decline in AD.


2011 ◽  
Vol 31 (21) ◽  
pp. 7840-7847 ◽  
Author(s):  
I. Sotiropoulos ◽  
C. Catania ◽  
L. G. Pinto ◽  
R. Silva ◽  
G. E. Pollerberg ◽  
...  

2021 ◽  
Author(s):  
Denise Visser ◽  
Sander CJ Verfaillie ◽  
Emma E Wolters ◽  
Emma M Coomans ◽  
Tessa Timmers ◽  
...  

AbstractPurposeEarly-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD.MethodsSeventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n=35, age-at-PET=59±5, MMSE=23±4; LOAD: n=44, age-at-PET=71±5, MMSE=23±4) underwent a 130 minutes dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition.ResultsBoth region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipito-parietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND -0.76≤stβ≤-0.48 vs LOAD -0.18≤stβ≤-0.02; EOAD R1 0.37≤stβ≤0.84 vs LOAD -0.25≤stβ≤0.16).ConclusionsCompared to LOAD, the degree of lateral temporal and occipito-parietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD.


Sign in / Sign up

Export Citation Format

Share Document