Neurotherapeutics
Latest Publications


TOTAL DOCUMENTS

1752
(FIVE YEARS 473)

H-INDEX

92
(FIVE YEARS 13)

Published By Springer-Verlag

1878-7479, 1933-7213

2022 ◽  
Author(s):  
Ramkumar Aishworiya ◽  
Tatiana Valica ◽  
Randi Hagerman ◽  
Bibiana Restrepo

AbstractWhile behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD.


2022 ◽  
Author(s):  
Ilona Krey ◽  
Sarah von Spiczak ◽  
Kathrine M. Johannesen ◽  
Christiane Hikel ◽  
Gerhard Kurlemann ◽  
...  

AbstractPathogenic missense variants in GRIN2A and GRIN2B may result in gain or loss of function (GoF/LoF) of the N-methyl-D-aspartate receptor (NMDAR). This observation gave rise to the hypothesis of successfully treating GRIN-related disorders due to LoF variants with co-agonists of the NMDAR. In this respect, we describe a retrospectively collected series of ten individuals with GRIN2A- or GRIN2B-related disorders who were treated with L-serine, each within an independent n-of-1 trial. Our cohort comprises one individual with a LoF missense variant with clinical improvements confirming the above hypothesis and replicating a previous n-of-1 trial. A second individual with a GoF missense variant was erroneously treated with L-serine and experienced immediate temporary behavioral deterioration further supporting the supposed functional pathomechanism. Eight additional individuals with null variants (that had been interpreted as loss-of-function variants despite not being missense) again showed clinical improvements. Among all nine individuals with LoF missense or null variants, L-serine treatment was associated with improvements in behavior in eight (89%), in development in four (44%), and/or in EEG or seizure frequency in four (44%). None of these nine individuals experienced side effects or adverse findings in the context of L-serine treatment. In summary, we describe the first evidence that L-serine treatment may not only be associated with clinical improvements in GRIN-related disorders due to LoF missense but particularly also null variants.


2022 ◽  
Author(s):  
Christopher Nelke ◽  
Marianna Spatola ◽  
Christina B. Schroeter ◽  
Heinz Wiendl ◽  
Jan D. Lünemann

AbstractAutoantibodies are increasingly recognized for their pathogenic potential in a growing number of neurological diseases. While myasthenia gravis represents the prototypic antibody (Ab)-mediated neurological disease, many more disorders characterized by Abs targeting neuronal or glial antigens have been identified over the past two decades. Depletion of humoral immune components including immunoglobulin G (IgG) through plasma exchange or immunoadsorption is a successful therapeutic strategy in most of these disease conditions. The neonatal Fc receptor (FcRn), primarily expressed by endothelial and myeloid cells, facilitates IgG recycling and extends the half-life of IgG molecules. FcRn blockade prevents binding of endogenous IgG to FcRn, which forces these antibodies into lysosomal degradation, leading to IgG depletion. Enhancing the degradation of endogenous IgG by FcRn-targeted therapies proved to be a powerful therapeutic approach in patients with generalized MG and is currently being tested in clinical trials for several other neurological diseases including autoimmune encephalopathies, neuromyelitis optica spectrum disorders, and inflammatory neuropathies. This review illustrates mechanisms of FcRn-targeted therapies and appraises their potential to treat neurological diseases.


2022 ◽  
Author(s):  
Carolyn Tallon ◽  
Anjali Sharma ◽  
Zhi Zhang ◽  
Ajit G. Thomas ◽  
Justin Ng ◽  
...  

2021 ◽  
Author(s):  
Tatjana Rundek ◽  
Magdalena Tolea ◽  
Taylor Ariko ◽  
Eric A. Fagerli ◽  
Christian J. Camargo

2021 ◽  
Author(s):  
M. Ilyas Kamboh

AbstractAlzheimer’s disease (AD) is a complex and multifactorial neurodegenerative disease. Due to its long clinical course and lack of an effective treatment, AD has become a major public health problem in the USA and worldwide. Due to variation in age-at-onset, AD is classified into early-onset (< 60 years) and late-onset (≥ 60 years) forms with early-onset accounting for only 5–10% of all cases. With the exception of a small number of early-onset cases that are afflicted because of high penetrant single gene mutations in APP, PSEN1, and PSEN2 genes, AD is genetically heterogeneous, especially the late-onset form having a polygenic or oligogenic risk inheritance. Since the identification of APOE as the most significant risk factor for late-onset AD in 1993, the path to the discovery of additional AD risk genes had been arduous until 2009 when the use of large genome-wide association studies opened up the discovery gateways that led the identification of ~ 95 additional risk loci from 2009 to early 2022. This article reviews the history of AD genetics followed by the potential molecular pathways and recent application of functional genomics methods to identify the causal AD gene(s) among the many genes that reside within a single locus. The ultimate goal of integrating genomics and functional genomics is to discover novel pathways underlying the AD pathobiology in order to identify drug targets for the therapeutic treatment of this heterogeneous disorder.


2021 ◽  
Author(s):  
Trevor M. Poitras ◽  
Easton Munchrath ◽  
Douglas W. Zochodne

2021 ◽  
Author(s):  
Shinya Okuda ◽  
Norihito Uemura ◽  
Masanori Sawamura ◽  
Tomoyuki Taguchi ◽  
Masashi Ikuno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document