Faculty Opinions recommendation of Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-β.

Author(s):  
Samuel Gandy ◽  
Ina Caesar
2021 ◽  
Vol 17 (S9) ◽  
Author(s):  
Noah R Johnson ◽  
Athena Ching‐Jung Wang ◽  
Christina M Coughlan ◽  
Stefan H Sillau ◽  
Esteban M Lucero ◽  
...  

Brain ◽  
2012 ◽  
Vol 135 (7) ◽  
pp. 2155-2168 ◽  
Author(s):  
Robert M. Koffie ◽  
Tadafumi Hashimoto ◽  
Hwan-Ching Tai ◽  
Kevin R. Kay ◽  
Alberto Serrano-Pozo ◽  
...  

2011 ◽  
Vol 39 (4) ◽  
pp. 924-932 ◽  
Author(s):  
Yadong Huang

ApoE4 (apolipoprotein E4) is the major known genetic risk factor for AD (Alzheimer's disease). In most clinical studies, apoE4 carriers account for 65–80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging data suggest that apoE4, with its multiple cellular origins and multiple structural and biophysical properties, contributes to AD in multiple ways either independently or in combination with other factors, such as Aβ (amyloid β-peptide) and tau. Many apoE mouse models have been established to study the mechanisms underlying the pathogenic actions of apoE4. These include transgenic mice expressing different apoE isoforms in neurons or astrocytes, those expressing neurotoxic apoE4 fragments in neurons and human apoE isoform knock-in mice. Since apoE is expressed in different types of cells, including astrocytes and neurons, and in brains under diverse physiological and/or pathophysiological conditions, these apoE mouse models provide unique tools to study the cellular source-dependent roles of apoE isoforms in neurobiology and in the pathogenesis of AD. They also provide useful tools for discovery and development of drugs targeting apoE4's detrimental effects.


ASN NEURO ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 175909141771920 ◽  
Author(s):  
Felecia M. Marottoli ◽  
Yuriko Katsumata ◽  
Kevin P. Koster ◽  
Riya Thomas ◽  
David W. Fardo ◽  
...  

Cerebrovascular dysfunction is rapidly reemerging as a major process of Alzheimer’s disease (AD). It is, therefore, crucial to delineate the roles of AD risk factors in cerebrovascular dysfunction. While apolipoprotein E4 ( APOE4), Amyloid-β (Aβ), and peripheral inflammation independently induce cerebrovascular damage, their collective effects remain to be elucidated. The goal of this study was to determine the interactive effect of APOE4, Aβ, and chronic repeated peripheral inflammation on cerebrovascular and cognitive dysfunction in vivo. EFAD mice are a well-characterized mouse model that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce human Aβ42 via expression of 5 Familial Alzheimer’s disease (5xFAD) mutations. Here, we utilized EFAD carriers [5xFAD+/−/ APOE+/+ (EFAD+)] and noncarriers [5xFAD−/−/ APOE+/+ (EFAD−)] to compare the effects of peripheral inflammation in the presence or absence of human Aβ overproduction. Low-level, chronic repeated peripheral inflammation was induced in EFAD mice via systemic administration of lipopolysaccharide (LPS; 0.5 mg/kg/wk i.p.) from 4 to 6 months of age. In E4FAD+ mice, peripheral inflammation caused cognitive deficits and lowered post-synaptic protein levels. Importantly, cerebrovascular deficits were observed in LPS-challenged E4FAD+ mice, including cerebrovascular leakiness, lower vessel coverage, and cerebral amyloid angiopathy-like Aβ deposition. Thus, APOE4, Aβ, and peripheral inflammation interact to induce cerebrovascular damage and cognitive deficits.


2011 ◽  
Vol 25 (5) ◽  
pp. 1585-1595 ◽  
Author(s):  
Emilie Cerf ◽  
Adelin Gustot ◽  
Erik Goormaghtigh ◽  
Jean-Marie Ruysschaert ◽  
Vincent Raussens

2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Noah R. Johnson ◽  
Athena Ching‐Jung Wang ◽  
Christina M. Coughlan ◽  
Esteban M. Lucero ◽  
Lisa Viltz ◽  
...  

2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


Author(s):  
Mingeun Kim ◽  
Juhye Kang ◽  
Misun Lee ◽  
Jiyeon Han ◽  
Geewoo Nam ◽  
...  

We report a minimalistic redox-based design strategy for engineering compact molecules based on the simplest aromatic framework, benzene, with multi-reactivity against free radicals, metal-free amyloid-β, and metal-bound amyloid-β, implicated in the most common form of dementia, Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document