collective effects
Recently Published Documents


TOTAL DOCUMENTS

756
(FIVE YEARS 132)

H-INDEX

44
(FIVE YEARS 4)

Instruments ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Alexander Yu. Molodozhentsev ◽  
Konstantin O. Kruchinin

The combination of advanced high-power laser technology, new acceleration methods and achievements in undulator development offers the opportunity to build compact, high-brilliance free electron lasers driven by a laser wakefield accelerator. Here, we present a simulation study outlining the main requirements for the laser–plasma-based extreme ultraviolet free electron laser setup with the aim to reach saturation of the photon pulse energy in a single unit of a commercially available undulator with the deflection parameter K0 in the range of 1–1.5. A dedicated electron beam transport strategy that allows control of the electron beam slice parameters, including collective effects, required by the self-amplified spontaneous emission regime is proposed. Finally, a set of coherent photon radiation parameters achievable in the undulator section utilizing the best experimentally demonstrated electron beam parameters are analyzed. As a result, we demonstrate that the ultra-short, few-fs-level pulse of the photon radiation with the wavelength in the extreme ultraviolet range can be obtained with the peak brilliance of ∼7×1028 photons/pulse/mm2/mrad2/0.1%bw.


Author(s):  
Nerine Joewondo ◽  
Valeria Garbin ◽  
Ronny Pini

AbstractUnderstanding the evolution of solute concentration gradients underpins the prediction of porous media processes limited by mass transfer. Here, we present the development of a mathematical model that describes the dissolution of spherical bubbles in two-dimensional regular pore networks. The model is solved numerically for lattices with up to 169 bubbles by evaluating the role of pore network connectivity, vacant lattice sites and the initial bubble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution time of the lattice, and the strength of the phenomenon depends on the network connectivity. The extension of the final dissolution time relative to the unbounded (bulk) case follows the power-law function, $${B^k/\ell }$$ B k / ℓ , where the constant $$\ell$$ ℓ is the inter-bubble spacing, B is the number of bubbles, and the exponent k depends on the network connectivity. The solute concentration field is both the consequence and a factor affecting bubble dissolution or growth. The geometry of the pore network perturbs the inward propagation of the dissolution front and can generate vacant sites within the bubble lattice. This effect is enhanced by increasing the lattice size and decreasing the network connectivity, yielding strongly nonuniform solute concentration fields. Sparse bubble lattices experience decreased collective effects, but they feature a more complex evolution, because the solute concentration field is nonuniform from the outset.


2022 ◽  
Author(s):  
Shusheng Chen ◽  
Ting Han ◽  
Junkai Liu ◽  
Xinting Liang ◽  
Jinglei Yang ◽  
...  

Polymeric materials play an essential and ubiquitous role in modern societies, but they are inevitably damaged during service, which can lead to compromised performance or even direct failure. The sensitive detection and dynamic monitoring of the health states of polymers is thus crucial to increase their reliability, safety, and lifetime. Herein, a facile fluorescence-based approach that can achieve the nondestructive, on-site, real-time, full-field, and sensitive visualization and monitoring of damaging-healing processes of polymers is demonstrated. By embedding novel UV-blocking microcapsules containing a diisocyanate solution of aggregation-induced emission luminogens (AIEgens) into a polymer matrix, the damaged regions of the composite show turn-on fluorescence and dual signal changes in both fluorescence intensity and fluorescence color can be observed during the healing processes. The invisible information of the static health states and dynamic healing processes can be directly and semi-quantitatively visualized by naked eyes based on the collective effects of AIE and twisted intramolecular charge transfer. In addition to the autonomous damage-reporting, self-healing, and health indication functionalities, the microcapsule-embedded polymeric coatings possess excellent photo- and water-protection capabilities, which are appealing to various practical applications.


2021 ◽  
Author(s):  
Vaibhav Upadhyay ◽  
Casey Patrick ◽  
Alexandra Lucas ◽  
Krishna Mallela

COVID-19 pandemic has extended for close to two years with the continuous emergence of new variants. Mutations in the receptor binding domain (RBD) are of prime importance in dictating the SARS-CoV-2 spike protein function. By studying a series of single, double and triple RBD mutants, we have delineated the individual and collective effects of RBD mutations in a variant of concern (VOC) containing multiple mutations (Gamma variant; K417T/E484K/N501Y) on binding to angiotensin converting enzyme 2 (ACE2) receptor, antibody escape and protein stability. Our results show that each mutation in the VOC serves a distinct function that improves virus fitness landscape supporting its positive selection, even though individual mutations have deleterious effects that make them prone to negative selection. K417T contributes to increased expression, increased stability and escape from class 1 antibodies; however, it has decreased ACE2 binding. E484K contributes to escape from class 2 antibodies; however, it has decreased expression, decreased stability, and decreased ACE2 binding affinity. N501Y increases receptor binding affinity; however, it has decreased stability and decreased expression. But when these mutations come together, the deleterious effects are mitigated in the triple mutant due to the presence of compensatory effects, which improves the chances of selection of mutations together. These results show the implications of presence of multiple mutations on virus evolution and indicate the emergence of future SARS-CoV-2 variants with multiple mutations that enhance viral fitness on different fronts by balancing both positive and negative selection.


2021 ◽  
Vol 16 ◽  
pp. 250-260
Author(s):  
Evelina Prozorova

Article is proposed, built taking into account the influence of the angular momentum (force) in mathematical models of open mechanics. The speeds of various processes at the time of writing the equations were relatively small compared to modern ones. Theories have generally been developed for closed systems. As a result, in continuum mechanics, the theory developed for potential flows was expanded on flows with significant gradients of physical parameters without taking into account the combined action of force and moment. The paper substantiates the vector definition of pressure and the no symmetry of the stress tensor based on consideration of potential flows and on the basis of kinetic theory. It is proved that for structureless particles the symmetry condition for the stress tensor is one of the possible conditions for closing the system of equations. The influence of the moment is also traced in the formation of fluctuations in a liquid and in a plasma in the study of Brownian motion, Landau damping, and in the formation of nanostructures. The nature of some effects in nanostructures is discussed. The action of the moment leads to three-dimensional effects even for initially flat structures. It is confirmed that the action of the moment of force is the main source of the collective effects observed in nature. Examples of solving problems of the theory of elasticity are given.


2021 ◽  
Author(s):  
Yuefeng Nie ◽  
Haoying Sun ◽  
Jierong Wang ◽  
Yushu Wang ◽  
Jiahui Gu ◽  
...  

Abstract Ferroelectric domain wall memories have been proposed as a promising candidate for nonvolatile memories, given their intriguing advantages including low energy consumption and high-density integration. Perovskite oxides possess superior ferroelectric prosperities but perovskite-based domain wall memory integrated on silicon has rarely been reported due to the technical challenges in the sample preparation. Here, we demonstrate a domain wall memory prototype utilizing freestanding BaTiO3 membranes transferred onto silicon. While as-grown BTO films on (001) SrTiO3 substrate are purely c-axis polarized, we find they exhibit distinct in-plane multidomain structures after released from the substrate and integrated onto silicon due to the collective effects from depolarizing field and strain relaxation. Based on the strong in-plane ferroelectricity, conductive domain walls with reading currents reaching 2 nA are observed and can be created artificially, highlighting the great potential of the integration of perovskite oxides with silicon for ferroelectric domain wall memories.


Author(s):  
Étienne Fodor ◽  
Robert L. Jack ◽  
Michael E. Cates

Active systems evade the rules of equilibrium thermodynamics by constantly dissipating energy at the level of their microscopic components. This energy flux stems from the conversion of a fuel, present in the environment, into sustained individual motion. It can lead to collective effects without any equilibrium equivalent, some of which can be rationalized by using equilibrium tools to recapitulate nonequilibrium transitions. An important challenge is then to delineate systematically to what extent the character of these active transitions is genuinely distinct from equilibrium analogs. We review recent works that use stochastic thermodynamics tools to identify, for active systems, a measure of irreversibility comprising a coarse-grained or informatic entropy production. We describe how this relates to the underlying energy dissipation or thermodynamic entropy production, and how it is influenced by collective behavior. Then, we review the possibility of constructing thermodynamic ensembles out-of-equilibrium, where trajectories are biased toward atypical values of nonequilibrium observables. We show that this is a generic route to discovering unexpected phase transitions in active matter systems, which can also inform their design. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012135
Author(s):  
M M Mitrankova ◽  
A Ya Berdnikov ◽  
Ya A Berdnikov ◽  
D O Kotov ◽  
Iu M Mitrankov

Abstract Ultrarelativistic ion collisions provide the unique possibility to study the quark-gluon plasma, a state of matter formed in the universe at the very first moments after the Big Bang. The minimal temperature and baryon density for the quark-gluon plasma formation requires scrutiny, since the signatures of the quark-gluon plasma formation are observed in large systems (such as Au+Au) at s N N = 200 GeV , whereas collective effects in p+p collisions are not revealed. The φ-meson production measurements are considered to be a convenient tool to investigate the collision dynamics, as it is sensitive to the quark-gluon plasma effects. To interpret the nuclear modification effects and to study the process of the possible QGP formation the comparison with different theoretical models predictions is needed. This paper presents the comparison of the obtained experimental results on φ-meson production in small collision systems (p+Al, p+Au) at s N N = 200 GeV to default and string melting versions of the AMPT model and PYTHIA model predictions. The results indicate that the minimal conditions (temperature and baryon density) for a QGP formation may lie in between in p+Al and p+Au collisions.


Sign in / Sign up

Export Citation Format

Share Document