Faculty Opinions recommendation of Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria.

Author(s):  
P Darrell Neufer
Biochemistry ◽  
2013 ◽  
Vol 52 (16) ◽  
pp. 2793-2809 ◽  
Author(s):  
Brian Glancy ◽  
Wayne T. Willis ◽  
David J. Chess ◽  
Robert S. Balaban

Mitochondrion ◽  
2007 ◽  
Vol 7 (6) ◽  
pp. 422-423
Author(s):  
George Kypriotakis ◽  
Bruce H. Cohen ◽  
Sumit Parikh ◽  
Douglas S. Kerr ◽  
Charles L. Hoppel ◽  
...  

1970 ◽  
Vol 48 (12) ◽  
pp. 1332-1338 ◽  
Author(s):  
K. Wrogemann ◽  
M. C. Blanchaer ◽  
B. E. Jacobson

Skeletal muscle mitochondria were isolated in the presence and absence of the proteinase Nagarse from dystrophic hamsters of the BIO 14.6 strain, aged 45–196 days, and from normal hamsters. Mitochondria from the dystrophic animals prepared by glass-on-glass homogenization without Nagarse in 0.25 M sucrose – 1 mM EDTA, pH 7.4, did not differ from normal in their respiratory rate or capacity for oxidative phosphorylation. However, these functions were subnormal in mitochondria isolated with Nagarse from the same animals, both in the presence and absence of albumin. Respiration measured with an O2 electrode was reduced by 50–70% and the stimulation of O2 uptake normally seen after ADP addition was minimal or absent. This was most marked in mitochondria from young hamsters about 65 days old with muscle necrosis. The defect was ameliorated by addition to the Polarographie test system of an ATP trap or of Mg2+, one of the trap constituents. This ion, when added to the defective mitochondria prior to ADP and substrate, restored respiration and oxidative phosphorylation to values that did not differ significantly from those found with skeletal muscle mitochondria of normal hamsters.


1978 ◽  
Vol 234 (1) ◽  
pp. C1-C6 ◽  
Author(s):  
C. Skoog ◽  
U. Kromer ◽  
R. W. Mitchell ◽  
J. Hoogstraten ◽  
N. L. Stephens

Studies on oxidative phosphorylation revealed that, in frog skeletal muscle mitochondria (SKMM) from the thigh, the adenosine diphosphate/oxygen ratio (ADP/O) was 2.8 +/- 0.1 SE, and the respiratory control ratio was 9.5 +/- 0.9, with pyruvate/malate as the substrate. Oxygen uptake rate (Qo2) was 225 mumol O2 per minute per gram mitochondrial protein +/- 13; phosphorylation rate (ADP/O X Qo2 X 2) was 1,230 mumol ADP phosphorylation per minute per gram mitochondrial protein +/- 77; and the phosphorylation capacity (phosphorylation rate times tissue mitochondrial protein content) was 3.6 mumol ADP phosphorylated per gram wet weight of muscle +/- 0.2. Tissue mitochondrial protein content was determined by the measurement of nicotinamide adenine dinucleotide (NADH) oxidase activity. Electron microscopy (EM) revealed intact, isolated, energized twisted mitochondria of a condensed form. Frog sartorius muscle mitochondria gave similar oxidative phosphorylation parameters when investigated independently of the rest of the thigh. These values of SKMM respiration from the frog are similar to those values obtained from pigeon and rabbit heart and rat skeletal muscles. However, because of the low NADH-oxidase activity indicating reduced mitochondrial content (this was verified in low-magnification EM pictures), phosphorylation capacity was significantly reduced in frog skeletal muscle mitochondria.


2000 ◽  
Vol 350 (2) ◽  
pp. 547-553 ◽  
Author(s):  
Damien ROUSSEL ◽  
Florence LHENRY ◽  
Laurent ECOCHARD ◽  
Brigitte SEMPORE ◽  
Jean-Louis ROUANET ◽  
...  

To examine the combined effects of 2-week endurance training and 3-week feeding with β-guanidinopropionic acid (GPA) on regional adaptability of skeletal muscle mitochondria, intermyofibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated from quadriceps muscles of sedentary control, trained control, sedentary GPA-fed and trained GPA-fed rats. Mitochondrial oxidative phosphorylation was assessed polarographically by using pyruvate plus malate, succinate (plus rotenone), and ascorbate plus N,N,N´,N´-tetramethyl-p-phenylenediamine (TMPD) (plus antimycin) as respiratory substrates. Assays of cytochrome c oxidase and F1-ATPase activities were also performed. In sedentary control rats, IFM exhibited a higher oxidative capacity than SSM, whereas F1-ATPase activities were similar. Training increased the oxidative phosphorylation capacity of mitochondria with both pyruvate plus malate and ascorbate plus TMPD as substrates, with no differences between IFM and SSM. In contrast, the GPA diet mainly improved the overall SSM oxidative phosphorylation capacity, irrespective of the substrate used. Finally, the superimposition of training to feeding with GPA strongly increased both oxidase and enzymic activities in SSM, whereas no cumulative effects were found in IFM mitochondria. It therefore seems that endurance training and feeding with GPA, which are both known to alter the energetic status of the muscle cell, might mediate distinct biochemical adaptations in regional skeletal muscle mitochondria.


Sign in / Sign up

Export Citation Format

Share Document