Faculty Opinions recommendation of Differential innervation of direct- and indirect-pathway striatal projection neurons.

Author(s):  
Kent Berridge
2014 ◽  
Vol 112 (1) ◽  
pp. 120-146 ◽  
Author(s):  
Kenji Morita

The corticostriatal system is considered to be crucially involved in learning and action selection. Anatomical studies have shown that two types of corticostriatal neurons, intratelencephalic (IT) and pyramidal tract (PT) cells, preferentially project to dopamine D1 or D2 receptor-expressing striatal projection neurons, respectively. In contrast, an optogenetic study has shown that stimulation of IT axons evokes comparable responses in D1 and D2 cells and that stimulation of PT axons evokes larger responses in D1 cells. Since the optogenetic study applied brief stimulation only, however, the overall impacts of repetitive inputs remain unclear. Moreover, the apparent contradiction between the anatomical and optogenetic results remains to be resolved. I addressed these issues by using a computational approach. Specifically, I constructed a model of striatal response to cortical inputs, with parameters regarding short-term synaptic plasticity and anatomical connection strength for each connection type. Under the constraint of the optogenetic results, I then explored the parameters that best explain the previously reported paired-pulse ratio of response in D1 and D2 cells to cortical and intrastriatal stimulations, which presumably recruit different compositions of IT and PT fibers. The results indicate that 1) IT→D1 and PT→D2 connections are anatomically stronger than IT→D2 and PT→D1 connections, respectively, consistent with the previous findings, and that 2) IT→D1 and PT→D2 synapses entail short-term facilitation, whereas IT→D2 and PT→D1 synapses would basically show depression, and thereby 3) repetitive IT or PT inputs have larger overall impacts on D1 or D2 cells, respectively, supporting a recently proposed hypothesis on the roles of corticostriatal circuits in reinforcement learning.


2017 ◽  
Vol 37 (41) ◽  
pp. 9977-9998 ◽  
Author(s):  
Andrew Sharott ◽  
Federica Vinciati ◽  
Kouichi C. Nakamura ◽  
Peter J. Magill

Author(s):  
Maya Ketzef ◽  
Gilad Silberberg

SummaryThe rodent external Globus Pallidus (GPe) contains two main neuronal subpopulations, prototypic and arkypallidal cells, which differ in their cellular properties. Their functional synaptic connectivity is, however, largely unknown. Here, we studied the membrane properties and synaptic inputs to these subpopulations in the mouse GPe. We obtained in vivo whole-cell recordings from identified GPe neurons and used optogenetic stimulation to dissect their afferent inputs from the striatum and subthalamic nucleus (STN). All GPe neurons received barrages of excitatory and inhibitory input during slow wave activity. The modulation of their activity was cell-type specific and shaped by their respective membrane properties and afferent inputs. Both GPe subpopulations received synaptic input from STN and striatal projection neurons (MSNs). STN and indirect pathway MSNs strongly targeted prototypic cells while direct pathway MSNs selectively inhibited arkypallidal cells. We show that GPe subtypes are differently embedded in the basal ganglia network, supporting distinct functional roles.


2020 ◽  
Author(s):  
Qiaoling Cui ◽  
Xixun Du ◽  
Isaac Y. M. Chang ◽  
Arin Pamukcu ◽  
Varoth Lilascharoen ◽  
...  

AbstractThe classic basal ganglia circuit model asserts a complete segregation of the two striatal output pathways. Empirical data argue that, in addition to indirect-pathway striatal projection neurons (iSPNs), direct-pathway striatal projection neurons (dSPNs) innervate the external globus pallidus (GPe). However, the functions of the latter were not known. In this study, we interrogated the organization principles of striatopallidal projections and how they are involved in full-body movement in mice (both males and females). In contrast to the canonical motor-promoting role of dSPNs in the dorsomedial striatum (DMSdSPNs), optogenetic stimulation of dSPNs in the dorsolateral striatum (DLSdSPNs) suppressed locomotion. Circuit analyses revealed that dSPNs selectively target Npas1+ neurons in the GPe. In a chronic 6-hydroxydopamine lesion model of Parkinson’s disease, the dSPN-Npas1+ projection was dramatically strengthened. As DLSdSPN-Npas1+ projection suppresses movement, the enhancement of this projection represents a circuit mechanism for the hypokinetic symptoms of Parkinson’s disease that has not been previously considered.Significance statementIn the classic basal ganglia model, the striatum is described as a divergent structure—it controls motor and adaptive functions through two segregated, opponent output streams. However, the experimental results that show the projection from direct-pathway neurons to the external pallidum have been largely ignored. Here, we showed that this striatopallidal sub-pathway targets a select subset of neurons in the external pallidum and is motor-suppressing. We found that this sub-pathway undergoes plastic changes in a Parkinson’s disease model. In particular, our results suggest that the increase in strength of this sub-pathway contributes to the slowness or reduced movements observed in Parkinson’s disease.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Farid N Garas ◽  
Rahul S Shah ◽  
Eszter Kormann ◽  
Natalie M Doig ◽  
Federica Vinciati ◽  
...  

Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called ‘direct pathway’, whereas PV+/Scgn- interneurons preferentially targeted ‘indirect pathway’ SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.


Sign in / Sign up

Export Citation Format

Share Document