Faculty Opinions recommendation of In vivo live imaging of RNA polymerase II transcription factories in primary cells.

Author(s):  
Ron Prywes
2013 ◽  
Vol 27 (7) ◽  
pp. 767-777 ◽  
Author(s):  
A. Ghamari ◽  
M. P. C. van de Corput ◽  
S. Thongjuea ◽  
W. A. van Cappellen ◽  
W. van IJcken ◽  
...  

1996 ◽  
Vol 16 (5) ◽  
pp. 2350-2360 ◽  
Author(s):  
E F Michelotti ◽  
G A Michelotti ◽  
A I Aronsohn ◽  
D Levens

The CT element is a positively acting homopyrimidine tract upstream of the c-myc gene to which the well-characterized transcription factor Spl and heterogeneous nuclear ribonucleoprotein (hnRNP) K, a less well-characterized protein associated with hnRNP complexes, have previously been shown to bind. The present work demonstrates that both of these molecules contribute to CT element-activated transcription in vitro. The pyrimidine-rich strand of the CT element both bound to hnRNP K and competitively inhibited transcription in vitro, suggesting a role for hnRNP K in activating transcription through this single-stranded sequence. Direct addition of recombinant hnRNP K to reaction mixtures programmed with templates bearing single-stranded CT elements increased specific RNA synthesis. If hnRNP K is a transcription factor, then interactions with the RNA polymerase II transcription apparatus are predicted. Affinity columns charged with recombinant hnRNP K specifically bind a component(s) necessary for transcription activation. The depleted factors were biochemically complemented by a crude TFIID phosphocellulose fraction, indicating that hnRNP K might interact with the TATA-binding protein (TBP)-TBP-associated factor complex. Coimmunoprecipitation of a complex formed in vivo between hnRNP K and epitope-tagged TBP as well as binding in vitro between recombinant proteins demonstrated a protein-protein interaction between TBP and hnRNP K. Furthermore, when the two proteins were overexpressed in vivo, transcription from a CT element-dependent reporter was synergistically activated. These data indicate that hnRNP K binds to a specific cis element, interacts with the RNA polymerase II transcription machinery, and stimulates transcription and thus has all of the properties of a transcription factor.


2005 ◽  
Vol 16 (11) ◽  
pp. 5304-5315 ◽  
Author(s):  
Archa H. Fox ◽  
Charles S. Bond ◽  
Angus I. Lamond

P54nrb is a protein implicated in multiple nuclear processes whose specific functions may correlate with its presence at different nuclear locations. Here we characterize paraspeckles, a subnuclear domain containing p54nrb and other RNA-binding proteins including PSP1, a protein with sequence similarity to p54nrb that acts as a marker for paraspeckles. We show that PSP1 interacts in vivo with a subset of the total cellular pool of p54nrb. We map the domain within PSP1 that is mediating this interaction and show it is required for the correct localization of PSP1 to paraspeckles. This interaction is necessary but not sufficient for paraspeckle targeting by PSP1, which also requires an RRM capable of RNA binding. Blocking the reinitiation of RNA Pol II transcription at the end of mitosis with DRB prevents paraspeckle formation, which recommences after removal of DRB, indicating that paraspeckle formation is dependent on RNA Polymerase II transcription. Thus paraspeckles are the sites where a subset of the total cellular pool of p54nrb is targeted in a RNA Polymerase II-dependent manner.


Nature ◽  
2009 ◽  
Vol 461 (7261) ◽  
pp. 186-192 ◽  
Author(s):  
Nicholas J. Fuda ◽  
M. Behfar Ardehali ◽  
John T. Lis

2013 ◽  
Vol 91 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Scott Davidson ◽  
Neil Macpherson ◽  
Jennifer A. Mitchell

Transcription occurs at distinct nuclear compartments termed transcription factories that are specialized for transcription by 1 of the 3 polymerase complexes (I, II, or III). Protein-coding genes appear to move in and out of RNA polymerase II (RNAPII) compartments as they are expressed and silenced. In addition, transcription factories are sites where several transcription units, either from the same chromosome or different chromosomes, are transcribed. Chromosomes occupy distinct territories in the interphase nucleus with active genes preferentially positioned on the periphery or even looped out of the territory. These chromosome territories have been observed to intermingle in the nucleus, and multiple interactions among different chromosomes have been identified in genome-wide studies. Deep sequencing of the transcriptome and RNAPII associated on DNA obtained by chromatin immunoprecipitation have revealed a plethora of noncoding transcription and intergenic accumulations of RNAPII that must also be considered in models of genome function. The organization of transcription into distinct regions of the nucleus has changed the way we view transcription with the evolving model for silencing or activation of gene expression involving physical relocation of the transcription unit to a silencing or activation compartment, thus, highlighting the need to consider the process of transcription in the 3-dimensional nuclear space.


Sign in / Sign up

Export Citation Format

Share Document