Faculty Opinions recommendation of De novo protein crystal structure determination from X-ray free-electron laser data.

Author(s):  
Paul Langan ◽  
Andrey Kovalevsky
Nature ◽  
2013 ◽  
Vol 505 (7482) ◽  
pp. 244-247 ◽  
Author(s):  
Thomas R. M. Barends ◽  
Lutz Foucar ◽  
Sabine Botha ◽  
R. Bruce Doak ◽  
Robert L. Shoeman ◽  
...  

IUCrJ ◽  
2021 ◽  
Vol 8 (6) ◽  
Author(s):  
Karol Nass ◽  
Camila Bacellar ◽  
Claudio Cirelli ◽  
Florian Dworkowski ◽  
Yaroslav Gevorkov ◽  
...  

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.


2014 ◽  
Vol 70 (a1) ◽  
pp. C569-C569
Author(s):  
Hideo Ago ◽  
Kunio Hirata ◽  
Kyoko Shinzawa-Itoh ◽  
Naomine Yano ◽  
Tomitake Tsukihara ◽  
...  

X-ray irradiation on a protein crystal can cause some subtle structural modification on the protein structure even if the radiation dose is much smaller than a dose used for a common crystal structure determination. In some case such structural modification increases ambiguity of structural inspection, and eventually could be an obstacle on the elucidation of structure basis of protein function. Bovine heart cytochrome c oxidase (CcO) is one of such proteins having some problem caused by the radiation damage. The proton pumping of CcO is coupled with O2 reduction at the O2 reduction site, thus accurate structure determination of bound ligand as well as CcO itself is very important. Whereas accurate structure determination was impeded by the immediate photolysis of the peroxide ligand upon X-ray irradiation even at a cryogenic temperature[1]. We developed a goniometer based data collection system for the femtosecond crystallography at SACLA (SPring-8 Angstrom Compact free-electron LAser). The femtosecond crystallography is expected to have an advantage in high-resolution and radiation damage free structure determination of very large protein by combined usage of large crystal and femtosecond intense X-ray pulse. In this presentation we are going to show the result of the femtosecond crystallography on the crystal of CcO having large unit cell dimensions. The close inspection of the electron density map calculated at 1.9 Å resolution showed the femtosecond crystallography worked fine for the high resolution and radiation damage free crystal structure determination of CcO.


Sign in / Sign up

Export Citation Format

Share Document