mating pheromone
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 4)

H-INDEX

42
(FIVE YEARS 1)

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1530
Author(s):  
Jesse C. Patterson ◽  
Louise S. Goupil ◽  
Jeremy Thorner

Eukaryotes utilize distinct mitogen/messenger-activated protein kinase (MAPK) pathways to evoke appropriate responses when confronted with different stimuli. In yeast, hyperosmotic stress activates MAPK Hog1, whereas mating pheromones activate MAPK Fus3 (and MAPK Kss1). Because these pathways share several upstream components, including the small guanosine-5′-triphosphate phosphohydrolase (GTPase) cell-division-cycle-42 (Cdc42), mechanisms must exist to prevent inadvertent cross-pathway activation. Hog1 activity is required to prevent crosstalk to Fus3 and Kss1. To identify other factors required to maintain signaling fidelity during hypertonic stress, we devised an unbiased genetic selection for mutants unable to prevent such crosstalk even when active Hog1 is present. We repeatedly isolated truncated alleles of RGA1, a Cdc42-specific GTPase-activating protein (GAP), each lacking its C-terminal catalytic domain, that permit activation of the mating MAPKs under hyperosmotic conditions despite Hog1 being present. We show that Rga1 down-regulates Cdc42 within the high-osmolarity glycerol (HOG) pathway, but not the mating pathway. Because induction of mating pathway output via crosstalk from the HOG pathway takes significantly longer than induction of HOG pathway output, our findings suggest that, under normal conditions, Rga1 contributes to signal insulation by limiting availability of the GTP-bound Cdc42 pool generated by hypertonic stress. Thus, Rga1 action contributes to squelching crosstalk by imposing a type of “kinetic proofreading”. Although Rga1 is a Hog1 substrate in vitro, we eliminated the possibility that its direct Hog1-mediated phosphorylation is necessary for its function in vivo. Instead, we found first that, like its paralog Rga2, Rga1 is subject to inhibitory phosphorylation by the S. cerevisiae cyclin-dependent protein kinase 1 (Cdk1) ortholog Cdc28 and that hyperosmotic shock stimulates its dephosphorylation and thus Rga1 activation. Second, we found that Hog1 promotes Rga1 activation by blocking its Cdk1-mediated phosphorylation, thereby allowing its phosphoprotein phosphatase 2A (PP2A)-mediated dephosphorylation. These findings shed light on why Hog1 activity is required to prevent crosstalk from the HOG pathway to the mating pheromone response pathway.


2020 ◽  
Vol 11 ◽  
Author(s):  
Angélica Partida-Hanon ◽  
Moisés Maestro-López ◽  
Stefania Vitale ◽  
David Turrà ◽  
Antonio Di Pietro ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 506
Author(s):  
Sinil Kim ◽  
Byeongsuk Ha ◽  
Minseek Kim ◽  
Hyeon-Su Ro

The B mating-type locus of Lentinula edodes, a representative edible mushroom, is highly complex because of allelic variations in the mating pheromone receptors (RCBs) and the mating pheromones (PHBs) in both the Bα and Bβ subloci. The complexity of the B mating-type locus, five Bα subloci with five alleles of RCB1 and nine PHBs and three Bβ subloci with 3 alleles of RCB2 and five PHBs, has led us to investigate the specificity of the PHB–RCB interaction because the interaction plays a key role in non-self-recognition. In this study, the specificities of PHBs to RCB1-2 and RCB1-4 from the Bα sublocus and RCB2-1 from the Bb sublocus were investigated using recombinant yeast strains generated by replacing STE2, an endogenous yeast mating pheromone receptor, with the L. edodes RCBs. Fourteen synthetic PHBs with C-terminal carboxymethylation but without farnesylation were added to the recombinant yeast cells and the PHB–RCB interaction was monitored by the expression of the FUS1 gene—a downstream gene of the yeast mating signal pathway. RCB1-2 (Bα2) was activated by PHB1 (4.3-fold) and PHB2 (2.1-fold) from the Bα1 sublocus and RCB1-4 (Bα4) was activated by PHB5 (3.0-fold) and PHB6 (2.7-fold) from the Bα2 sublocus and PHB13 (3.0-fold) from the Bα5 sublocus. In particular, PHB3 from Bβ2 and PHB9 from Bβ3 showed strong activation of RCB2-1 of the Bβ1 sublocus by 59-fold. The RCB–PHB interactions were confirmed in the monokaryotic S1–10 strain of L. edodes by showing increased expression of clp1, a downstream gene of the mating signal pathway and the occurrence of clamp connections after the treatment of PHBs. These results indicate that a single PHB can interact with a non-self RCB in a sublocus-specific manner for the activation of the mating pheromone signal pathways in L. edodes.


Mycobiology ◽  
2018 ◽  
Vol 46 (4) ◽  
pp. 407-415 ◽  
Author(s):  
Byeongsuk Ha ◽  
Sinil Kim ◽  
Minseek Kim ◽  
Hyeon-Su Ro

2018 ◽  
Vol 18 (5) ◽  
Author(s):  
Lina Heistinger ◽  
Josef Moser ◽  
Nadine E Tatto ◽  
Minoska Valli ◽  
Brigitte Gasser ◽  
...  

Yeast ◽  
2018 ◽  
Vol 35 (1) ◽  
pp. 129-139
Author(s):  
Taku Ota ◽  
Keiko Kanai ◽  
Hisami Nishimura ◽  
Satoshi Yoshida ◽  
Hiroyuki Yoshimoto ◽  
...  

Protist ◽  
2017 ◽  
Vol 168 (6) ◽  
pp. 686-696 ◽  
Author(s):  
Mayumi Sugiura ◽  
Hajime J. Yuasa ◽  
Terue Harumoto
Keyword(s):  

2017 ◽  
Vol 292 (9) ◽  
pp. 3591-3602 ◽  
Author(s):  
Stefania Vitale ◽  
Angélica Partida-Hanon ◽  
Soraya Serrano ◽  
Álvaro Martínez-del-Pozo ◽  
Antonio Di Pietro ◽  
...  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Emily R Hildebrandt ◽  
Michael Cheng ◽  
Peng Zhao ◽  
June H Kim ◽  
Lance Wells ◽  
...  

The modifications occurring to CaaX proteins have largely been established using few reporter molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, and COOH-terminal methylation. Here, we investigated the coupling of these modifications in the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is resistant to post-isoprenylation events. These results expand on the complexity of protein isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of Ydj1p and perhaps other CaaX proteins.


Sign in / Sign up

Export Citation Format

Share Document