Faculty Opinions recommendation of AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling.

Author(s):  
Cesare Terracciano ◽  
Michael Ibrahim
2019 ◽  
Author(s):  
David Conesa ◽  
Blas Echebarria ◽  
Angelina Peñaranda ◽  
Inmaculada R. Cantalapiedra ◽  
Yohannes Shiferaw ◽  
...  

AbstractVentricular contraction is roughly proportional to the amount of calcium released from the Sarcoplasmic Reticulum (SR) during systole. While it is rather straightforward to measure calcium levels and contractibility under different physiological condition, the complexity of calcium handling during systole and diastole has made the prediction of its release at steady state impossible. Here we approach the problem analyzing the evolution of intracellular and extracellular calcium fluxes during a single beat which is away from homeostatic balance. Using an in-silico subcellular model of rabbit ventricular myocyte, we show that the high dimensional nonlinear problem of finding the steady state can be reduced to a two-variable general equilibrium condition where pre-systolic calcium level in the cytosol and in the SR must fulfill simultaneously two different equalities. This renders calcium homeostasis as a problem that can be studied in terms of its equilibrium structure, leading to precise predictions of steady state from single-beat measurements. We show how changes in ionic channels modify the general equilibrium as shocks would do in general equilibrium macroeconomic models. This allows us to predict when an enhanced entrance of calcium in the cell reduces its contractibility and explain why SERCA gene therapy, a change in calcium handling to treat heart failure, might fail to improve contraction even when it successfully increases SERCA expression.Author summaryCardiomyocytes, upon voltage excitation, release calcium, which leads to cell contraction. However, under some pathological conditions, calcium handling is impaired. Recently, SERCA gene therapy, whose aim is to improve Ca2+ sequestration by the Sarcoplasmic Reticulum (SR), has failed to improve the prognosis of patients with Heart Failure. This, together with recent counterintuitive results in calcium handling, has highlighted the need for a framework to understand calcium homeostasis across species and pathologies. We show here that the proper framework is a general equilibrium approach of two independent variables. The development of this framework allows us to find a possible mechanism for the failure of SERCA gene therapy even when it manages to increase Ca SERCA expression.


2020 ◽  
Vol 126 (8) ◽  
pp. 1024-1039 ◽  
Author(s):  
Suya Wang ◽  
Yifei Li ◽  
Yang Xu ◽  
Qing Ma ◽  
Zhiqiang Lin ◽  
...  

2010 ◽  
Vol 98 (3) ◽  
pp. 106a
Author(s):  
Andriy Belevych ◽  
Yoshinori Nishijima ◽  
Cynthia A. Carnes ◽  
Sandor Gyorke

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sven T Pleger ◽  
Changguang Shan ◽  
Jan Kziencek ◽  
Oliver Mueller ◽  
Raffi Bekeredjian ◽  
...  

Background: Cardiac expression of the Ca-dependent inotropic protein S100A1 is decreased in human end-stage heart failure (HF) and cardiomyocyte-targeted viral-based S100A1 gene transfer rescued failing myocardium in small animal models in vivo and in vitro via improved systolic and diastolic sarcoplasmic reticulum Ca-handling. We therefore hypothesized that cardioselective AAV9-S100A1 gene therapy will improve cardiac performance in a large animal experimental HF model under clinical conditions. Methods and Results: Left ventricular (LV) posterolateral myocardial infarction (MI) was induced in pigs by occlusion of the left coronary circumflex artery and resulted in LV failure (HF) 2 weeks post-MI reflected by a 40% and 27% reduction in LV +dp/dt max. and EF, respectively, as assessed by LV catheterization and echocardiography. Post-MI HF pigs were then randomized for retroinfusion of AAV9-luciferase (luc; n=6, 1.5×10 13 total viral particles, tvp) and AAV9-S100A1 (S100A1; n=6, 1.5×10 13 tvp) driven by a cardioselective promoter via the anterior cardiac vein while the left anterior descending artery was temporarily occluded. 14 weeks after cardiac gene transfer, the S100A1-treated HF group showed significantly enhanced S100A1 protein expression (+46.7±17.9%, P<0.05 vs. control groups) in targeted remote LV myocardium and improved indices of cardiac function and remodeling (luc vs. S100A1: +dp/dtmax: 983±81 vs. 1526±83 mmHg/s, EF: 39±2.1 vs. 61±3.7 %, P<0.05 S100A1 vs. luc, LV endsystolic diameter: luc 4.45±0.1 vs. S100A1 3.43 ±0.1 cm, P<0.05 S100A1 vs. luc, HR: 72±4 vs. 69±2, beats/min, P=n.s. S100A1 vs. luc). Importantly, analyses of renal, hepatic and hematopoetic function showed no alteration as assessed by unchanged transaminases, retention values and white blood cell counts compared to sham pigs. Conclusions: Our translational study provides proof of concept that AAV9-S100A1 based HF gene therapy is feasible and restores cardiac function in a large animal HF model under clinical conditions. Next, certified toxicological analysis and different AAV9-S100A1 dosage protocols will be assessed to eventually advance to first phase I/II clinical studies determining therapeutic efficiency of cardiac S100A1 gene therapy in HF patients.


2007 ◽  
Vol 13 (6) ◽  
pp. S6
Author(s):  
Yasuhiro Ikeda ◽  
Masafumi Yano ◽  
Hidekazu Aoyama ◽  
Takeshi Yamamoto ◽  
Masunori Matsuzaki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document