Faculty Opinions recommendation of Advances in multiparameter optimization methods for de novo drug design.

Author(s):  
Celerino Abad-Zapatero
2019 ◽  
Vol 59 (7) ◽  
pp. 3166-3176 ◽  
Author(s):  
Niclas Ståhl ◽  
Göran Falkman ◽  
Alexander Karlsson ◽  
Gunnar Mathiason ◽  
Jonas Boström

2019 ◽  
Author(s):  
Niclas Ståhl ◽  
Göran Falkman ◽  
Alexander Karlsson ◽  
Gunnar Mathiason ◽  
Jonas Boström

<p>In medicinal chemistry programs it is key to design and make compounds that are efficacious and safe. This is a long, complex and difficult multi-parameter optimization process, often including several properties with orthogonal trends. New methods for the automated design of compounds against profiles of multiple properties are thus of great value. Here we present a fragment-based reinforcement learning approach based on an actor-critic model, for the generation of novel molecules with optimal properties. The actor and the critic are both modelled with bidirectional long short-term memory (LSTM) networks. The AI method learns how to generate new compounds with desired properties by starting from an initial set of lead molecules and then improve these by replacing some of their fragments. A balanced binary tree based on the similarity of fragments is used in the generative process to bias the output towards structurally similar molecules. The method is demonstrated by a case study showing that 93% of the generated molecules are chemically valid, and a third satisfy the targeted objectives, while there were none in the initial set.</p>


2020 ◽  
Vol 17 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Laxmi Banjare ◽  
Sant Kumar Verma ◽  
Akhlesh Kumar Jain ◽  
Suresh Thareja

Background:Aromatase inhibitors emerged as a pivotal moiety to selectively block estrogen production, prevention and treatment of tumour growth in breast cancer. De novo drug design is an alternative approach to blind virtual screening for successful designing of the novel molecule against various therapeutic targets.Objective:In the present study, we have explored the de novo approach to design novel aromatase inhibitors.Method:The e-LEA3D, a computational-aided drug design web server was used to design novel drug-like candidates against the target aromatase. For drug-likeness ADME parameters (molecular weight, H-bond acceptors, H-bond donors, LogP and number of rotatable bonds) of designed molecules were calculated in TSAR software package, geometry optimization and energy minimization was accomplished using Chem Office. Further, molecular docking study was performed in Molegro Virtual Docker (MVD).Results:Among 17 generated molecules using the de novo pathway, 13 molecules passed the Lipinski filter pertaining to their bioavailability characteristics. De novo designed molecules with drug-likeness were further docked into the mapped active site of aromatase to scale up their affinity and binding fitness with the target. Among de novo fabricated drug like candidates (1-13), two molecules (5, 6) exhibited higher affinity with aromatase in terms of MolDock score (-150.650, -172.680 Kcal/mol, respectively) while molecule 8 showed lowest target affinity (-85.588 Kcal/mol).Conclusion:The binding patterns of lead molecules (5, 6) could be used as a pharmacophore for medicinal chemists to explore these molecules for their aromatase inhibitory potential.


2021 ◽  
Vol 61 (2) ◽  
pp. 621-630
Author(s):  
Sowmya Ramaswamy Krishnan ◽  
Navneet Bung ◽  
Gopalakrishnan Bulusu ◽  
Arijit Roy

2009 ◽  
Vol 14 (2) ◽  
pp. 257-276 ◽  
Author(s):  
Serdar Durdagi ◽  
Manthos G. Papadopoulos ◽  
Panagiotis G. Zoumpoulakis ◽  
Catherine Koukoulitsa ◽  
Thomas Mavromoustakos

Author(s):  
Gisbert Schneider ◽  
Markus Hartenfeller ◽  
Ewgenij Proschak

2019 ◽  
Vol 14 (8) ◽  
pp. 791-803 ◽  
Author(s):  
Thomas Fischer ◽  
Silvia Gazzola ◽  
Rainer Riedl

2020 ◽  
Vol 60 (12) ◽  
pp. 5918-5922
Author(s):  
Thomas Blaschke ◽  
Josep Arús-Pous ◽  
Hongming Chen ◽  
Christian Margreitter ◽  
Christian Tyrchan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document