Deep Reinforcement Learning and Docking Simulations for autonomous molecule generation in de novo Drug Design

2021 ◽  
Author(s):  
Hao Liu ◽  
Qian Wang ◽  
Xiaotong Hu
2021 ◽  
Author(s):  
Xuhan Liu ◽  
Kai Ye ◽  
Herman W. T. van Vlijmen ◽  
Adriaan P. IJzerman ◽  
Gerard J. P. van Westen

Due to the large drug-like chemical space available to search for feasible drug-like molecules, rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified. With the rapid growth of the application of deep learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previous work, we proposed a method named DrugEx, which can be applied in polypharmacology based on multi-objective deep reinforcement learning. However, the previous version is trained under fixed objectives similar to other known methods and does not allow users to input any prior information (i.e. a desired scaffold). In order to improve the general applicability, we updated DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. In this work, the Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as output. In order to deal with the graph representation of molecules we proposed a novel positional encoding for each atom and bond based on an adjacency matrix to extend the architecture of the Transformer. Each molecule was generated by growing and connecting procedures for the fragments in the given scaffold that were unified into one model. Moreover, we trained this generator under a reinforcement learning framework to increase the number of desired ligands. As a proof of concept, our proposed method was applied to design ligands for the adenosine A2A receptor (A2AAR) and compared with SMILES-based methods. The results demonstrated the effectiveness of our method in that 100% of the generated molecules are valid and most of them had a high predicted affinity value towards A2AAR with given scaffolds.


2018 ◽  
Vol 4 (7) ◽  
pp. eaap7885 ◽  
Author(s):  
Mariya Popova ◽  
Olexandr Isayev ◽  
Alexander Tropsha

2019 ◽  
Vol 59 (7) ◽  
pp. 3166-3176 ◽  
Author(s):  
Niclas Ståhl ◽  
Göran Falkman ◽  
Alexander Karlsson ◽  
Gunnar Mathiason ◽  
Jonas Boström

2021 ◽  
Author(s):  
Sara Romeo Atance ◽  
Juan Viguera Diez ◽  
Ola Engkvist ◽  
Simon Olsson ◽  
Rocío Mercado

2021 ◽  
Vol 22 (4) ◽  
pp. 1676
Author(s):  
Varnavas D. Mouchlis ◽  
Antreas Afantitis ◽  
Angela Serra ◽  
Michele Fratello ◽  
Anastasios G. Papadiamantis ◽  
...  

De novo drug design is a computational approach that generates novel molecular structures from atomic building blocks with no a priori relationships. Conventional methods include structure-based and ligand-based design, which depend on the properties of the active site of a biological target or its known active binders, respectively. Artificial intelligence, including ma-chine learning, is an emerging field that has positively impacted the drug discovery process. Deep reinforcement learning is a subdivision of machine learning that combines artificial neural networks with reinforcement-learning architectures. This method has successfully been em-ployed to develop novel de novo drug design approaches using a variety of artificial networks including recurrent neural networks, convolutional neural networks, generative adversarial networks, and autoencoders. This review article summarizes advances in de novo drug design, from conventional growth algorithms to advanced machine-learning methodologies and high-lights hot topics for further development.


2019 ◽  
Author(s):  
Niclas Ståhl ◽  
Göran Falkman ◽  
Alexander Karlsson ◽  
Gunnar Mathiason ◽  
Jonas Boström

<p>In medicinal chemistry programs it is key to design and make compounds that are efficacious and safe. This is a long, complex and difficult multi-parameter optimization process, often including several properties with orthogonal trends. New methods for the automated design of compounds against profiles of multiple properties are thus of great value. Here we present a fragment-based reinforcement learning approach based on an actor-critic model, for the generation of novel molecules with optimal properties. The actor and the critic are both modelled with bidirectional long short-term memory (LSTM) networks. The AI method learns how to generate new compounds with desired properties by starting from an initial set of lead molecules and then improve these by replacing some of their fragments. A balanced binary tree based on the similarity of fragments is used in the generative process to bias the output towards structurally similar molecules. The method is demonstrated by a case study showing that 93% of the generated molecules are chemically valid, and a third satisfy the targeted objectives, while there were none in the initial set.</p>


2020 ◽  
Vol 17 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Laxmi Banjare ◽  
Sant Kumar Verma ◽  
Akhlesh Kumar Jain ◽  
Suresh Thareja

Background:Aromatase inhibitors emerged as a pivotal moiety to selectively block estrogen production, prevention and treatment of tumour growth in breast cancer. De novo drug design is an alternative approach to blind virtual screening for successful designing of the novel molecule against various therapeutic targets.Objective:In the present study, we have explored the de novo approach to design novel aromatase inhibitors.Method:The e-LEA3D, a computational-aided drug design web server was used to design novel drug-like candidates against the target aromatase. For drug-likeness ADME parameters (molecular weight, H-bond acceptors, H-bond donors, LogP and number of rotatable bonds) of designed molecules were calculated in TSAR software package, geometry optimization and energy minimization was accomplished using Chem Office. Further, molecular docking study was performed in Molegro Virtual Docker (MVD).Results:Among 17 generated molecules using the de novo pathway, 13 molecules passed the Lipinski filter pertaining to their bioavailability characteristics. De novo designed molecules with drug-likeness were further docked into the mapped active site of aromatase to scale up their affinity and binding fitness with the target. Among de novo fabricated drug like candidates (1-13), two molecules (5, 6) exhibited higher affinity with aromatase in terms of MolDock score (-150.650, -172.680 Kcal/mol, respectively) while molecule 8 showed lowest target affinity (-85.588 Kcal/mol).Conclusion:The binding patterns of lead molecules (5, 6) could be used as a pharmacophore for medicinal chemists to explore these molecules for their aromatase inhibitory potential.


2021 ◽  
Vol 61 (2) ◽  
pp. 621-630
Author(s):  
Sowmya Ramaswamy Krishnan ◽  
Navneet Bung ◽  
Gopalakrishnan Bulusu ◽  
Arijit Roy

2009 ◽  
Vol 14 (2) ◽  
pp. 257-276 ◽  
Author(s):  
Serdar Durdagi ◽  
Manthos G. Papadopoulos ◽  
Panagiotis G. Zoumpoulakis ◽  
Catherine Koukoulitsa ◽  
Thomas Mavromoustakos

Author(s):  
Gisbert Schneider ◽  
Markus Hartenfeller ◽  
Ewgenij Proschak

Sign in / Sign up

Export Citation Format

Share Document