Faculty Opinions recommendation of Intrinsic cellular chirality regulates left-right symmetry breaking during cardiac looping.

Author(s):  
Patrick Tam
2018 ◽  
Vol 115 (50) ◽  
pp. E11568-E11577 ◽  
Author(s):  
Poulomi Ray ◽  
Amanda S. Chin ◽  
Kathryn E. Worley ◽  
Jie Fan ◽  
Gurleen Kaur ◽  
...  

The vertebrate body plan is overall symmetrical but left–right (LR) asymmetric in the shape and positioning of internal organs. Although several theories have been proposed, the biophysical mechanisms underlying LR asymmetry are still unclear, especially the role of cell chirality, the LR asymmetry at the cellular level, on organ asymmetry. Here with developing chicken embryos, we examine whether intrinsic cell chirality or handedness regulates cardiac C looping. Using a recently established biomaterial-based 3D culture platform, we demonstrate that chick cardiac cells before and during C looping are intrinsically chiral and exhibit dominant clockwise rotation in vitro. We further show that cells in the developing myocardium are chiral as evident by a rightward bias of cell alignment and a rightward polarization of the Golgi complex, correlating with the direction of cardiac tube rotation. In addition, there is an LR polarized distribution of N-cadherin and myosin II in the myocardium before the onset of cardiac looping. More interestingly, the reversal of cell chirality via activation of the protein kinase C signaling pathway reverses the directionality of cardiac looping, accompanied by a reversal in cellular biases on the cardiac tube. Our results suggest that myocardial cell chirality regulates cellular LR symmetry breaking in the heart tube and the resultant directionality of cardiac looping. Our study provides evidence of an intrinsic cellular chiral bias leading to LR symmetry breaking during directional tissue rotation in vertebrate development.


Author(s):  
D.J. Eaglesham

Convergent Beam Electron Diffraction is now almost routinely used in the determination of the point- and space-groups of crystalline samples. In addition to its small-probe capability, CBED is also postulated to be more sensitive than X-ray diffraction in determining crystal symmetries. Multiple diffraction is phase-sensitive, so that the distinction between centro- and non-centro-symmetric space groups should be trivial in CBED: in addition, the stronger scattering of electrons may give a general increase in sensitivity to small atomic displacements. However, the sensitivity of CBED symmetry to the crystal point group has rarely been quantified, and CBED is also subject to symmetry-breaking due to local strains and inhomogeneities. The purpose of this paper is to classify the various types of symmetry-breaking, present calculations of the sensitivity, and illustrate symmetry-breaking by surface strains.CBED symmetry determinations usually proceed by determining the diffraction group along various zone axes, and hence finding the point group. The diffraction group can be found using either the intensity distribution in the discs


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


2011 ◽  
Author(s):  
Kimberley D. Orsten ◽  
Mary C. Portillo ◽  
James R. Pomerantz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document