scholarly journals Faculty Opinions recommendation of Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex.

Author(s):  
James K Stoops ◽  
Jun Liu
Author(s):  
Yanqing Zhang ◽  
Sai Li ◽  
Chao Zeng ◽  
Gaoxingyu Huang ◽  
Xuechen Zhu ◽  
...  

Nuclear pore complex (NPC) mediates the flow of substances between the nucleus and cytoplasm in eukaryotic cells. Here we report the cryo-electron tomography (cryo-ET) structure of the luminal ring (LR) of the NPC from Xenopus laevis oocyte. The observed key structural features of the LR are independently confirmed by single-particle cryo-electron microscopy (cryo-EM) analysis. The LR comprises eight butterfly-shaped subunits, each containing two symmetric wings. Each wing consists of four elongated, tubular protomers. Within the LR subunit, the eight protomers form a Finger domain, which directly contacts the fusion between the inner and outer nuclear membranes, and a Grid domain, which serves as a rigid base for the Finger domain. Two neighbouring LR subunits interact with each other through the lateral edges of their wings to constitute a Bumper domain, which displays two major conformations and appears to cushion neighbouring NPCs. Our study reveals previously unknown features of the LR and potentially explains the elastic property of the NPC.


Cell Research ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 532-540 ◽  
Author(s):  
Yanqing Zhang ◽  
Sai Li ◽  
Chao Zeng ◽  
Gaoxingyu Huang ◽  
Xuechen Zhu ◽  
...  

Science ◽  
2016 ◽  
Vol 352 (6283) ◽  
pp. 363-365 ◽  
Author(s):  
J. Kosinski ◽  
S. Mosalaganti ◽  
A. von Appen ◽  
R. Teimer ◽  
A. L. DiGuilio ◽  
...  

2000 ◽  
Vol 148 (4) ◽  
pp. 635-652 ◽  
Author(s):  
Michael P. Rout ◽  
John D. Aitchison ◽  
Adisetyantari Suprapto ◽  
Kelly Hjertaas ◽  
Yingming Zhao ◽  
...  

An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport.


Sign in / Sign up

Export Citation Format

Share Document