nuclear envelope formation
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 1)

H-INDEX

20
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Julie A Shields ◽  
Samuel R Meier ◽  
Madhavi Bandi ◽  
Maria Dam Ferdinez ◽  
Justin L Engel ◽  
...  

Synthetic lethality - a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone - can be co-opted for cancer therapeutics. A pair of paralog genes is among the most straightforward synthetic lethal interaction by virtue of their redundant functions. Here we demonstrate a paralog-based synthetic lethality by targeting Vaccinia-Related Kinase 1 (VRK1) in Vaccinia-Related Kinase 2 (VRK2)-methylated glioblastoma (GBM). VRK2 is silenced by promoter methylation in approximately two-thirds of GBM, an aggressive cancer with few available targeted therapies. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells results in decreased activity of the downstream substrate Barrier to Autointegration Factor (BAF), a regulator of post-mitotic nuclear envelope formation. VRK1 knockdown, and thus reduced BAF activity, causes nuclear lobulation, blebbing and micronucleation, which subsequently results in G2/M arrest and DNA damage. The VRK1-VRK2 synthetic lethal interaction is dependent on VRK1 kinase activity and is rescued by ectopic VRK2 expression. Knockdown of VRK1 leads to robust tumor growth inhibition in VRK2-methylated GBM xenografts. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Daniel S Johnson ◽  
Marina Bleck ◽  
Sanford M Simon

The Endosomal Sorting Complexes Required for Transport III (ESCRT-III) proteins are critical for cellular membrane scission processes with topologies inverted relative to clathrin-mediated endocytosis. Some viruses appropriate ESCRT-IIIs for their release. By imaging single assembling viral-like particles of HIV-1, we observed that ESCRT-IIIs and the ATPase VPS4 arrive after most of the virion membrane is bent, linger for tens of seconds, and depart ~20 s before scission. These observations suggest that ESCRT-IIIs are recruited by a combination of membrane curvature and the late domains of the HIV-1 Gag protein. ESCRT-IIIs may pull the neck into a narrower form but must leave to allow scission. If scission does not occur within minutes of ESCRT departure, ESCRT-IIIs and VPS4 are recruited again. This mechanistic insight is likely relevant for other ESCRT-dependent scission processes including cell division, endosome tubulation, multivesicular body and nuclear envelope formation, and secretion of exosomes and ectosomes.


2018 ◽  
Author(s):  
Daniel S. Johnson ◽  
Marina Bleck ◽  
Sanford M. Simon

The Endosomal Sorting Complexes Required for Transport III (ESCRT-III) proteins are critical for cellular membrane scission processes with topologies inverted relative to clathrin-mediated endocytosis. Some viruses appropriate ESCRT-IIIs for their release. By imaging single assembling viral-like particles of HIV-1, we observed that ESCRT-IIIs and the ATPase VPS4 arrive after most of the virion membrane is bent, linger for tens of seconds, and depart ∼20 seconds before scission. These observations suggest ESCRT-IIIs are recruited by a combination of membrane curvature and the late domains of the HIV-1 Gag protein. ESCRT-IIIs may pull the neck into a narrower form but must leave to allow scission. If scission does not occur within minutes of ESCRT departure, ESCRT-III and VPS4 are recruited again. This mechanistic insight is likely relevant for other ESCRT dependent scission processes including cell division, endosome tubulation, multivesicular body and nuclear envelope formation, and secretion of exosomes and ectosomes.


BioEssays ◽  
2015 ◽  
Vol 37 (10) ◽  
pp. 1074-1085 ◽  
Author(s):  
Christian Zierhut ◽  
Hironori Funabiki

2015 ◽  
Vol 128 (18) ◽  
pp. 3466-3477 ◽  
Author(s):  
A. Schooley ◽  
D. Moreno-Andres ◽  
P. De Magistris ◽  
B. Vollmer ◽  
W. Antonin

2015 ◽  
Vol 26 (12) ◽  
pp. 2227-2241 ◽  
Author(s):  
Travis Karg ◽  
Brandt Warecki ◽  
William Sullivan

To determine how chromosome segregation is coordinated with nuclear envelope formation (NEF), we examined the dynamics of NEF in the presence of lagging acentric chromosomes in Drosophila neuroblasts. Acentric chromosomes often exhibit delayed but ultimately successful segregation and incorporation into daughter nuclei. However, it is unknown whether these late-segregating acentric fragments influence NEF to ensure their inclusion in daughter nuclei. Through live analysis, we show that acentric chromosomes induce highly localized delays in the reassembly of the nuclear envelope. These delays result in a gap in the nuclear envelope that facilitates the inclusion of lagging acentrics into telophase daughter nuclei. Localized delays of nuclear envelope reassembly require Aurora B kinase activity. In cells with reduced Aurora B activity, there is a decrease in the frequency of local nuclear envelope reassembly delays, resulting in an increase in the frequency of acentric-bearing, lamin-coated micronuclei. These studies reveal a novel role of Aurora B in maintaining genomic integrity by promoting the formation of a passageway in the nuclear envelope through which late-segregating acentric chromosomes enter the telophase daughter nucleus.


2015 ◽  
Vol 48 (3) ◽  
pp. 381-389
Author(s):  
J. A. Tarkowska

Dividing endosperm cells of <i>Haemanthus katherinae</i> Bak., treated with 0.025 per cent aqueous solution of a mixture of glycosides from <i>Nerium oleander</i> were examined in vitro in the light and in the electron microscope. A high hypertrophy of endoplasmic reticulum was noted. In prometaphase and metaphase, after treatment for about l h 45 min there appeared very narrow cisternae forming various configurations, frequently in parallel and concentric arrangement. On the membranes of these cisternae there are formed dark areas interpreted as pores characteristic for nuclear envelopes, this indicating that at least part of the two-membrane structures transforms to the nuclear envelope. The formation of the new nuclear envelope pre-maturely and apparently in excess is discussed.


2014 ◽  
Vol 42 (5) ◽  
pp. 1335-1342 ◽  
Author(s):  
Banafshé Larijani ◽  
Fadi Hamati ◽  
Aupola Kundu ◽  
Gary C. Chung ◽  
Marie-Charlotte Domart ◽  
...  

To suggest and develop intelligent strategies to comprehend the regulation of organelle formation, a deeper mechanistic interpretation requires more than just the involvement of proteins. Our approaches link the formation of endomembranes with both signalling and membrane physical properties. Hitherto, membrane morphology, local physical structure and signalling have not been well integrated. Our studies derive from a cross-disciplinary approach undertaken to determine the molecular mechanisms of nuclear envelope assembly in echinoderm and mammalian cells. Our findings have led to the demonstration of a direct role for phosphoinositides and their derivatives in nuclear membrane formation. We have shown that phosphoinositides and their derivatives, as well as acting as second messengers, are modulators of membrane morphology, and their modifying enzymes regulate nuclear envelope formation. In addition, we have shown that echinoderm eggs can be exploited as a milieu to directly study the roles of phospholipids in maintaining organelle shape. The use of the echinoderm egg is a significant step forward in obtaining direct information about membrane physical properties in situ rather than using simpler models which do not provide a complete mechanistic insight into the role of phospholipids in membrane dynamics.


Author(s):  
Kyle B. Matchett ◽  
Suzanne McFarlane ◽  
Sophie E. Hamilton ◽  
Yousef S. A. Eltuhamy ◽  
Matthew A. Davidson ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e40669 ◽  
Author(s):  
Richard D. Byrne ◽  
Christopher Applebee ◽  
Dominic L. Poccia ◽  
Banafshé Larijani

Sign in / Sign up

Export Citation Format

Share Document