complex assembly
Recently Published Documents


TOTAL DOCUMENTS

782
(FIVE YEARS 127)

H-INDEX

77
(FIVE YEARS 10)

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Marzia Di Donato ◽  
Pia Giovannelli ◽  
Maria Vittoria Barone ◽  
Ferdinando Auricchio ◽  
Gabriella Castoria ◽  
...  

Prostate cancer (PC) is one of the most widespread malignancies among males worldwide. The androgen receptor (AR) plays a major role in prostate cancer development and progression and is the main target of PC therapy. Nonetheless, its action is not yet fully elucidated. We report here that the AR associates with Filamin A (FlnA) promoting migration and invasiveness of various PC-derived cells after androgen challenging. Inhibition of the AR/FlnA complex assembly by a very low concentration of Rh-2025u, an AR-derived peptide specifically interfering with this association, impairs such phenotype in monolayer cells and in 3D models. This study, together with our recent data in cancer-associated fibroblasts (CAFs), indicates that targeting the AR/FlnA complex could improve the clinical management of invasive PC, as the limited number of new drugs reaching the market suggests that we must re-examine the way invasive PC is currently treated. In this context, the synthesis of new biologically active molecules, such as the Rh-2025u peptide, which has been shown to efficiently interfere in the complex assembly in CAFs and PC cells, should overcome the limits of current available therapies, mostly based on hormone antagonists.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhuqiao Ma ◽  
Yifei Tong ◽  
Linyan Liu ◽  
Lei Huang ◽  
Juntang Yuan

In this paper, the simulation and key link characterization of the complex assembly model step-down process are studied and analysed in depth using the digital twin approach, and the method is used in the practical process. The physical model step-down method MORA algorithm and its physical interpretation in various simplified cases are given, and the MORA method is improved on this basis. The concept of local activeness based on knot structure is introduced, and the process of model transformation and downscaling and decomposition based on local activeness is explained in detail. The high-fidelity mapping of solid equipment is completed in virtual space, which can accurately reproduce and predict the health state of engineering equipment throughout its life cycle, effectively avoiding the huge property losses and safety risks caused by early failure of vulnerable structures and providing a safe and stable working environment for offshore oil and gas production. With the prototype monitoring data as reference, the response surface method is used to identify the parameters of the finite element model of the hinge node, which improves the fidelity of the virtual model of the hinge node. Considering the friction coefficient changes and load characteristics during the degradation of the hinge node, the dynamics simulation conditions are set, and the operating states of the hinge node at different stages of its whole life cycle are simulated by using the high-fidelity virtual model of the hinge node, and the prediction model of the hot spot stress of the hinge node is established to monitor its in-position state in real time, and the operation and maintenance overhaul method based on the health state of the hinge node is proposed. The system is divided into four modules: multilevel inverse modelling of the assembly twin, statistical shape characterization and analysis of batch parts, optimization of fixture positioning and flexible assembly of thin-walled parts, and optimization of low-stress assembly of bolted joint structure, which verifies the feasibility of the method and provides guidance for the actual product forming process.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261465
Author(s):  
Ivan Radin ◽  
Luise Kost ◽  
Uta Gey ◽  
Iris Steinebrunner ◽  
Gerhard Rödel

Mitochondria are sites of cellular respiration, which is accompanied by the generation of dangerous reactive oxygen species (ROS). Cells have multiple mechanisms to mitigate the dangers of ROS. Here we investigate the involvement of the COX complex assembly chaperone COX11 (cytochrome c oxidase 11) in cellular redox homeostasis, using homologs from the flowering plant Arabidopsis thaliana (AtCOX11) and yeast Saccharomyces cerevisiae (ScCOX11). We found that AtCOX11 is upregulated in Arabidopsis seedlings in response to various oxidative stresses, suggesting a defensive role. In line with this, the overexpression of either AtCOX11 or ScCOX11 reduced ROS levels in yeast cells exposed to the oxidative stressor paraquat. Under normal growth conditions, both Arabidopsis and yeast COX11 overexpressing cells had the same ROS levels as the corresponding WT. In contrast, the COX11 knock-down and knock-out in Arabidopsis and yeast, respectively, significantly reduced ROS levels. In yeast cells, the ScCOX11 appears to be functionally redundant with superoxide dismutase 1 (ScSOD1), a superoxide detoxifying enzyme. The ΔSccox11ΔScsod1 mutants had dramatically reduced growth on paraquat, compared with the WT or single mutants. This growth retardation does not seem to be linked to the status of the COX complex and cellular respiration. Overexpression of putatively soluble COX11 variants substantially improved the resistance of yeast cells to the ROS inducer menadione. This shows that COX11 proteins can provide antioxidative protection likely independently from their COX assembly function. The conserved Cys219 (in AtCOX11) and Cys208 (in ScCOX11) are important for this function. Altogether, these results suggest that COX11 homologs, in addition to participating in COX complex assembly, have a distinct and evolutionary conserved role in protecting cells during heightened oxidative stress.


2021 ◽  
Author(s):  
Diego J Paez-Moscoso ◽  
David V Ho ◽  
Lili Pan ◽  
Katie Hildebrand ◽  
Kristi L Jensen ◽  
...  

Telomerase reverse transcriptase (TERT) and the noncoding telomerase RNA (TR) subunit constitute the core of telomerase. Additional subunits are required for ribonucleoprotein complex assembly and in some cases remain stably associated with the active holoenzyme. Pof8, a member of the LARP7 protein family is such a constitutive component of telomerase in fission yeast. Using affinity purification of Pof8, we have identified two previously uncharacterized proteins that form a complex with Pof8 and participate in telomerase biogenesis. Both proteins participate in ribonucleoprotein complex assembly and are required for wildtype telomerase activity and telomere length maintenance. One factor we named Thc1 (Telomerase Holoenzyme Component 1) shares structural similarity with the nuclear cap binding complex and the poly-adenosine ribonuclease (PARN), the other is the ortholog of the methyl phosphate capping enzyme (Bin3/MePCE) in metazoans and was named Bmc1 (Bin3/MePCE 1) to reflect its evolutionary roots. Thc1 and Bmc1 function together with Pof8 in recognizing correctly folded telomerase RNA and promoting the recruitment of the Lsm2-8 complex and the catalytic subunit to assemble functional telomerase.


2021 ◽  
Author(s):  
Kwang-Ho Hur ◽  
Jared W. Hennen ◽  
Cosmo A Saunders ◽  
Amy Schoenhoefen ◽  
Patrick T Willey ◽  
...  

Chemical and mechanical nuclear-cytoplasmic communication across the nuclear envelope (NE) is largely mediated by the nuclear pore complex (NPC) and the linker of nucleoskeleton and cytoskeleton (LINC) complex, respectively. While NPC and LINC complex assembly are functionally related, the mechanisms responsible for this relationship remain poorly understood. Here, we investigated how the luminal ATPases associated with various cellular activities (AAA+) protein torsinA promotes NPC and LINC complex assembly using fluorescence fluctuation spectroscopy (FFS), quantitative photobleaching analyses, and functional cellular assays. We report that torsinA controls LINC complex-dependent nuclear-cytoskeletal coupling as a soluble hexameric AAA+ protein and interphase NPC biogenesis as a membrane-associated helical polymer. These findings help resolve the conflicting models of torsinA function that were recently proposed based on in vitro structural studies. Our results will enable future studies of the role of defective nuclear-cytoplasmic communication in DYT1 dystonia and other diseases caused by mutations in torsinA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanxiang Meng ◽  
Katherine A. Davies ◽  
Cheree Fitzgibbon ◽  
Samuel N. Young ◽  
Sarah E. Garnish ◽  
...  

AbstractThe ancestral origins of the lytic cell death mode, necroptosis, lie in host defense. However, the dysregulation of necroptosis in inflammatory diseases has led to widespread interest in targeting the pathway therapeutically. This mode of cell death is executed by the terminal effector, the MLKL pseudokinase, which is licensed to kill following phosphorylation by its upstream regulator, RIPK3 kinase. The precise molecular details underlying MLKL activation are still emerging and, intriguingly, appear to mechanistically-diverge between species. Here, we report the structure of the human RIPK3 kinase domain alone and in complex with the MLKL pseudokinase. These structures reveal how human RIPK3 structurally differs from its mouse counterpart, and how human RIPK3 maintains MLKL in an inactive conformation prior to induction of necroptosis. Residues within the RIPK3:MLKL C-lobe interface are crucial to complex assembly and necroptotic signaling in human cells, thereby rationalizing the strict species specificity governing RIPK3 activation of MLKL.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3103
Author(s):  
Nolan M. Dvorak ◽  
Cynthia M. Tapia ◽  
Timothy J. Baumgartner ◽  
Jully Singh ◽  
Fernanda Laezza ◽  
...  

Voltage-gated Na+ (Nav) channels are a primary molecular determinant of the action potential (AP). Despite the canonical role of the pore-forming α subunit in conferring this function, protein–protein interactions (PPI) between the Nav channel α subunit and its auxiliary proteins are necessary to reconstitute the full physiological activity of the channel and to fine-tune neuronal excitability. In the brain, the Nav channel isoforms 1.2 (Nav1.2) and 1.6 (Nav1.6) are enriched, and their activities are differentially regulated by the Nav channel auxiliary protein fibroblast growth factor 14 (FGF14). Despite the known regulation of neuronal Nav channel activity by FGF14, less is known about cellular signaling molecules that might modulate these regulatory effects of FGF14. To that end, and building upon our previous investigations suggesting that neuronal Nav channel activity is regulated by a kinase network involving GSK3, AKT, and Wee1, we interrogate in our current investigation how pharmacological inhibition of Wee1 kinase, a serine/threonine and tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint, affects the Nav1.2 and Nav1.6 channel macromolecular complexes. Our results show that the highly selective inhibitor of Wee1 kinase, called Wee1 inhibitor II, modulates FGF14:Nav1.2 complex assembly, but does not significantly affect FGF14:Nav1.6 complex assembly. These results are functionally recapitulated, as Wee1 inhibitor II entirely alters FGF14-mediated regulation of the Nav1.2 channel, but displays no effects on the Nav1.6 channel. At the molecular level, these effects of Wee1 inhibitor II on FGF14:Nav1.2 complex assembly and FGF14-mediated regulation of Nav1.2-mediated Na+ currents are shown to be dependent upon the presence of Y158 of FGF14, a residue known to be a prominent site for phosphorylation-mediated regulation of the protein. Overall, our data suggest that pharmacological inhibition of Wee1 confers selective modulatory effects on Nav1.2 channel activity, which has important implications for unraveling cellular signaling pathways that fine-tune neuronal excitability.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2099-2099
Author(s):  
Kenneth C Childers ◽  
Shaun Peters ◽  
John S. Lollar ◽  
H. Trent Spencer ◽  
Christopher B Doering ◽  
...  

Abstract The intrinsic tenase (Xase) complex is formed by activated clotting factors VIII (fVIIIa) and IX (fIXa) on activated platelet surfaces and catalyzes the activation of factor X to promote blood coagulation. The structural organization of the membrane-bound Xase complex remains largely unknown, hindering a mechanistic understanding of how mutations to fVIIIa or fIXa lead to thrombotic disorders. In the present study, we aimed to structurally characterize the Xase complex bound to a lipid nanodisc using biolayer interferometry and small-angle X-ray scattering. By immobilizing lipid nanodiscs, we measured binding rates and nanomolar affinities for fVIIIa, fIXa, and the Xase complex. An ab initio molecular envelope of the nanodisc-bound Xase complex allowed us to computationally model fVIIIa and fIXa docked onto a flexible lipid membrane and identify protein-protein interactions. Our results suggest that interactions between the Gla and catalytic domains of fIXa and the C2 and A2 domains of fVIIIa, respectively, mediate Xase complex assembly. Additionally, our computational modelling highlighted a novel interaction between fIXa residue K80 and an acidic patch formed at the fVIIIa A1/A3 domain interface. Our model of the Xase complex sheds light on how hemophilia A/B-related mutations with varying severities disrupt Xase complex assembly. We also speculate on how gain-of-function mutations to fIXa residue R338, such as the Padua (R338L) and Shanghai (R338Q) variants, bind to the fVIIIa A2 domain and stabilize the Xase complex, leading to excessive blood clotting. Together, our results support the use of SAXS as an emergent tool to investigate the membrane-bound Xase complex and illustrate how mutations at the fVIIIa/fIXa dimer interface may disrupt or stabilize the activated enzyme complex. Disclosures Lollar: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months, Patents & Royalties. Spencer: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months. Doering: Expression Therapeutics: Divested equity in a private or publicly-traded company in the past 24 months.


RNA ◽  
2021 ◽  
pp. rna.078995.121
Author(s):  
Xiuzhen Chen ◽  
Christine Mayr

Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly expressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein targets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and proteins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins. Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble condensates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the condensates, thus promoting their assembly into complexes. Taken together, we propose that lowly expressed subunits of protein complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein complex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic condensates.


Sign in / Sign up

Export Citation Format

Share Document