Faculty Opinions recommendation of Live Imaging of the Neural Crest Cell Epithelial-to-Mesenchymal Transition in the Chick Embryo.

Author(s):  
Kristin Artinger
2014 ◽  
Vol 25 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Rangarajan Padmanabhan ◽  
Sharon Jhingory ◽  
Lisa A. Taneyhill

The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.


2016 ◽  
Vol 215 (5) ◽  
pp. 735-747 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Vivien Xie ◽  
Lisa A. Taneyhill

During epithelial-to-mesenchymal transitions (EMTs), cells disassemble cadherin-based junctions to segregate from the epithelia. Chick premigratory cranial neural crest cells reduce Cadherin-6B (Cad6B) levels through several mechanisms, including proteolysis, to permit their EMT and migration. Serial processing of Cad6B by a disintegrin and metalloproteinase (ADAM) proteins and γ-secretase generates intracellular C-terminal fragments (CTF2s) that could acquire additional functions. Here we report that Cad6B CTF2 possesses a novel pro-EMT role by up-regulating EMT effector genes in vivo. After proteolysis, CTF2 remains associated with β-catenin, which stabilizes and redistributes both proteins to the cytosol and nucleus, leading to up-regulation of β-catenin, CyclinD1, Snail2, and Snail2 promoter-based GFP expression in vivo. A CTF2 β-catenin–binding mutant, however, fails to alter gene expression, indicating that CTF2 modulates β-catenin–responsive EMT effector genes. Notably, CTF2 association with the endogenous Snail2 promoter in the neural crest is β-catenin dependent. Collectively, our data reveal how Cad6B proteolysis orchestrates multiple pro-EMT regulatory inputs, including CTF2-mediated up-regulation of the Cad6B repressor Snail2, to ensure proper cranial neural crest EMT.


2004 ◽  
Vol 20 (4) ◽  
pp. 229-232 ◽  
Author(s):  
A.M. O’Donnell ◽  
A. Mortell ◽  
J. Giles ◽  
J. Bannigan ◽  
P. Puri

2005 ◽  
Vol 15 (4) ◽  
pp. 225-234 ◽  
Author(s):  
Gernot Schriek ◽  
Matthias Oppitz ◽  
Christian Busch ◽  
Lothar Just ◽  
Ulrich Drews

Sign in / Sign up

Export Citation Format

Share Document