Detection and Parameter Extraction of Low Probability of Intercept Frequency Hopping Signals using the Spectrogram and the Reassigned Spectrogram

Author(s):  
Daniel L. Stevens

Low probability of intercept radar signals, which are often problematic to detect and characterize, have as their goal ‘to see and not be seen’. Digital intercept receivers are currently moving away from Fourier-based analysis and towards classical time-frequency analysis techniques for the purpose of analyzing these low probability of intercept radar signals. Although these classical time-frequency analysis techniques are an improvement over existing Fourier-based techniques, they still suffer from a lack of readability –which can be caused by poor time-frequency localization (such as the spectrogram), which may in turn lead to inaccurate detection and parameter extraction. In this study, the reassignment method, because of its ability to improve time-frequency localization, is proposed as an improved signal analysis technique to address the poor time-frequency localization deficiency of the spectrogram. This paper presents the novel approach of characterizing low probability of intercept frequency hopping radar signals through utilization and direct comparison of the spectrogram versus the reassigned spectrogram.

Author(s):  
Daniel L. Stevens ◽  
Stephanie A. Schuckers

Low probability of intercept radar signals, which are often challenging to detect and characterize, have as their objective ‘to see and not be seen’. Digital intercept receivers are currently moving from Fourier-based techniques to classical time-frequency techniques for the analysis of low probability of intercept radar signals. This paper presents the novel approach of characterizing low probability of intercept frequency hopping radar signals through utilization and direct comparison of the Wigner Ville Distribuion versus the Choi Williams Distribution. Two different frequency hopping low probability of intercept radar signals were analyzed (4-component and 8-component). The following metrics were used for evaluation: percent error of:carrier frequency, modulation bandwidth, modulation period, and time-frequency localization. Also used were: percent detection, lowest signaltonoise ratio for signal detection, and plot (processing) time.


Author(s):  
Daniel L. Stevens ◽  
Stephanie A. Schuckers

Low probability of intercept radar signals, which are often problematic to detect and characterize, have as their goal ‘to see and not be seen’. Digital intercept receivers are currently moving away from Fourier-based analysis and towards classical time-frequency analysis techniques for the purpose of analyzing these low probability of intercept radar signals. This paper presents the novel approach of characterizing low probability of intercept frequency hopping radar signals through utilization and direct comparison of the Spectrogram versus the Scalogram. Two different frequency hopping low probability of intercept radar signals were analyzed(4-component and 8-component). The following metrics were used for evaluation: percent error of:carrier frequency, modulation bandwidth, modulation period, and time-frequency localization. Also used were: percent detection, lowest signal-to-noise ratio for signal detection, and plot (processing) time. Experimental results demonstrate that overall,theScalogram produced more accurate characterization metrics than the Spectrogram. An improvement in performance may well translate into saved equipment and lives.


Author(s):  
Daniel L. Stevens ◽  
Stephanie A. Schuckers

Digital intercept receivers are currently moving away from Fourier-based analysis and towards classical time-frequency analysis techniques, such as the Wigner-Ville distribution, Choi-Williams distribution, spectrogram, and scalogram, for the purpose of analyzing low probability of intercept radar signals (e.g. triangular modulated frequency modulated continuous wave and frequency shift keying). Although these classical time-frequency techniques are an improvement over the Fourier-based analysis, they still suffer from a lack of readability, due to cross-term interference, and a mediocre performance in low SNR environments. This lack of readability may lead to inaccurate detection and parameter extraction of these radar signals. In this paper, the use of the Hough transform, because of its ability to suppresscross-term interference, separate signals from cross-terms, and perform well in the presence of noise, is proposed as an improved signal analysis technique. With these qualities, the Hough transform has the potential to produce better readability and consequently, more accurate signal detection and parameter extraction metrics.


Author(s):  
Daniel L. Stevens ◽  
Stephanie A. Schuckers

Digital intercept receivers are currently moving away from Fourier-based analysis and towards classical time-frequency analysis techniques for the purpose of analyzing low probability of intercept radar signals. This paper presents the novel approach of characterizing low probability of intercept frequency modulated continuous wave radar signals through utilization and direct comparison of the Spectrogram versus the Scalogram. Two different triangular modulated frequency modulated continuous wave signals were analyzed. The following metrics were used for evaluation: percent error of: carrier frequency, modulation bandwidth, modulation period, chirp rate, and time-frequency localization (x and y direction). Also used were: percent detection, lowest signal-to-noise ratio for signal detection, and plot (processing) time. Experimental results demonstrate that overall, the Spectrogram produced more accurate characterization metrics than the Scalogram. An improvement in performance may well translate into saved equipment and lives.


Author(s):  
Daniel L. Stevens

Digital intercept receivers are currently moving away from Fourier-based analysis and towards classical time frequency analysis techniques for the purpose of analyzing low probability of intercept radar signals. This paper presents the novel approach of characterizing low probability of intercept triangular modulated frequency modulated continuous wave radar signals through utilization and direct comparison of the Wigner Ville Distribution versus the Choi Williams Distribution. The following metrics were used for evaluation: percent error of: carrier frequency, modulation bandwidth, modulation period, chirp rate, and time-frequency localization (x and y direction). Also used were: percent detection, lowest signal-to noise ratio for signal detection, and plot (processing) time. Experimental results demonstrate that overall, the Wigner Ville Distribution produced more accurate characterization metrics than the Choi Williams Distribution. An improvement in performance may well translate into an increase in personnel safety.


2014 ◽  
Vol 684 ◽  
pp. 124-130
Author(s):  
Hong Li ◽  
Qing He ◽  
Zhao Zhang

There is very rich fault information in vibration signals of rotating machineries. The real vibration signals are nonlinear, non-stationary and time-varying signals mixed with many other factors. It is very useful for fault diagnosis to extract fault features by using time-frequency analysis techniques. Recent researches of time-frequency analysis methods including Short Time Fourier Transform, Wavelet Transform, Wigner-Ville Distribution, Hilbert-Huang Transform, Local Mean Decomposition, and Local Characteristic-scale Decomposition are introduced. The theories, properties, physical significance and applications, advantages and disadvantages of these methods are analyzed and compared. It is pointed that algorithms improvement and combined applications of time-frequency analysis methods should be researched in the future.


Sign in / Sign up

Export Citation Format

Share Document