scholarly journals Future Challenges in State of Charge Estimation for Lithium-Ion Batteries

Energy storage system is an Emerging technology in past few decades. The Energy storage system is an important technology for Electric Vehicles, Hybrid Electric Vehicles (EV) and (HVE) and Micro grid system. The Battery Management System (BMS) is need to be control and monitor the various parameter of the battery such as SOC , SOH, C-Rate, E-Rate ,Temperature , RVL , EOL and so on. However, the (SOC) State of Charge is an important estimation for the online control and BMS monitoring. The SOC is the challenging task when online control and BMS monitoring. This various technique or methods available to estimate the SOC and alsoits represents the Elaboration for various methods of SOC estimation and its drawback. Past five years, where the tendency of the Estimation technique has been oriented towards a mixture of probabilistic techniques and some Artificial Intelligence.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1048
Author(s):  
Dariusz Karkosiński ◽  
Wojciech Aleksander Rosiński ◽  
Piotr Deinrych ◽  
Szymon Potrykus

This paper presents an innovative approach to the design of a forthcoming, fully electric-powered cargo vessel. This work begins by defining problems that need to be solved when designing vessels of this kind. Using available literature and market research, a solution for the design of a power management system and a battery management system for a cargo vessel of up to 1504 TEU capacity was developed. The proposed solution contains an innovative approach with three parallel energy sources. The solution takes into consideration the possible necessity for zero-emission work with the optional function of operation as an autonomous vessel. Energy storage system based on lithium-ion battery banks with a possibility of expanding the capacity is also described in this work as it is the core part of the proposed solution. It is estimated that the operation range for zero-emission work mode of up to 136 nautical miles can be achieved through the application of all fore-mentioned parts.


Technologies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Hossam A. Gabbar ◽  
Ahmed M. Othman ◽  
Muhammad R. Abdussami

The evolving global landscape for electrical distribution and use created a need area for energy storage systems (ESS), making them among the fastest growing electrical power system products. A key element in any energy storage system is the capability to monitor, control, and optimize performance of an individual or multiple battery modules in an energy storage system and the ability to control the disconnection of the module(s) from the system in the event of abnormal conditions. This management scheme is known as “battery management system (BMS)”, which is one of the essential units in electrical equipment. BMS reacts with external events, as well with as an internal event. It is used to improve the battery performance with proper safety measures within a system. Therefore, a safe BMS is the prerequisite for operating an electrical system. This report analyzes the details of BMS for electric transportation and large-scale (stationary) energy storage. The analysis includes different aspects of BMS covering testing, component, functionalities, topology, operation, architecture, and BMS safety aspects. Additionally, current related standards and codes related to BMS are also reviewed. The report investigates BMS safety aspects, battery technology, regulation needs, and offer recommendations. It further studies current gaps in respect to the safety requirements and performance requirements of BMS by focusing mainly on the electric transportation and stationary application. The report further provides a framework for developing a new standard on BMS, especially on BMS safety and operational risk. In conclusion, four main areas of (1) BMS construction, (2) Operation Parameters, (3) BMS Integration, and (4) Installation for improvement of BMS safety and performance are identified, and detailed recommendations were provided for each area. It is recommended that a technical review of the BMS be performed for transportation electrification and large-scale (stationary) applications. A comprehensive evaluation of the components, architectures, and safety risks applicable to BMS operation is also presented.


2014 ◽  
Vol 102 (6) ◽  
pp. 1014-1030 ◽  
Author(s):  
Matthew T. Lawder ◽  
Bharatkumar Suthar ◽  
Paul W. C. Northrop ◽  
Sumitava De ◽  
C. Michael Hoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document