scholarly journals Optimization of Hybrid AC/DC Microgrid in Grid-Connected Mode

The instability of the production of renewable energy resources (RESs) is a major problem for its installation and integration with the utility grid. A hybrid AC/DC microgrid facilitates the good operation of RESs with a storage system in grid-tied mode and the possibilities of smart energy management. The present work is being carried out on smart control strategy for a hybrid AC/DC microgrid (HMG). This paper deals with a real-time Hybrid control system (HCS) for a grid-connected HMG where the supervisory control based totally on fixing an optimization hassle objectives to minimize operating cost with the maximum usage of renewable resources, minimum usage of the utility grid, extending energy storage systems (ESS) lifetime. The power references for renewable energy resources (RESs) are scheduled by the use of CPLEX solver which uses as input strength measurement, archived facts and stored climate forecast statistics previously measured regarding the modern status. The experimental study verifies well the supervision methodology; thus, the proposed algorithm respects the optimization in real-time operation under different constraints.

2020 ◽  
Vol 9 (2) ◽  
pp. 295-301
Author(s):  
Nabil Qachchachi ◽  
Hassane Mahmoudi ◽  
Abdennebi El Hassnaoui

The fluctuation of production of renewable energy resources (RESs) is a big problem for its installation and integration in isolated residential buildings. A hybrid AC/DC microgrid facilitates the good operation of RESs with a storage system in standalone mode and the possibilities of smart energy management. In this paper optimization research of the hybrid ac/dc microgrid in isolated mode of operation is presented. The power system is supplied by various Renewable Energy Resources (RESs), Photovoltaic arrays (PVA), a Wind Turbine Generator (WTG), Diesel Generator (DG) and supported by Batteries Storage System (BSS) for short term storage. The main objective of this study is to optimize power flow within a hybrid ac/dc microgrid with regards to reliability in islanded mode. First a mathematical model optimized by mixed integer linear programming and solved by CPLEX solver with JAVA language is developed for an islanded RES system and then, based on the developed model, the power system control is simulated for different cases of off-grid mode. Simulation results have shown that the management strategy can maintain power balancing while performing optimized control and give a controllable loads and batteries charging/discharging powers, even with unpredictability of RESs powers outputs and arbitrary energy tariffs. Finally, the proposed algorithm respects the optimization in real-time operation under various constraints.%.©2020. CBIORE-IJRED. All rights reserved


2021 ◽  
Vol 16 ◽  
pp. 41-51
Author(s):  
T. A. Boghdady ◽  
S. N. Alajmi ◽  
W. M. K. Darwish ◽  
M. A. Mostafa Hassan ◽  
A. Monem Seif

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems


2021 ◽  
Vol 298 ◽  
pp. 117215
Author(s):  
Seyed Mehdi Hakimi ◽  
Arezoo Hasankhani ◽  
Miadreza Shafie-khah ◽  
João P.S. Catalão

Author(s):  
Zaineb Nisar Jan

Abstract: In the present world where environmental issues are posing a great threat to the survival of mankind a better yet effective way of reducing carbon emissions and improving the environment by less usage of fossil fuels was suggested. This approach was called microgrid (MG). Renewable energy resources could be used effectively to produce electricity and can be easily integrated with the conventional grid. This paper elaborates on the basic concept of microgrid, and then describes the challenges and future prospects of the microgrid. Distribution generators along with energy storage devices and proper interfacing power electronic devices are used. Working on the basis of the type of microgrid is also discussed in this paper. Keywords: Renewable energy resources, distributed energy, AC microgrid, DC microgrid, energy management.


Sign in / Sign up

Export Citation Format

Share Document