scholarly journals Flexural Strengthening of Reinforced Concrete Beams with Externally Bonded Hybrid FRP Laminate

Author(s):  
K. Pradeeba ◽  
◽  
Dr. A. Rajasekaran ◽  

This paper enumerates the effectiveness of externally bonded Hybrid Fiber Reinforced Polymers (HyFRP) laminates on reinforced concrete beams for flexural strengthening. A total of 5reinforced concrete beams of size 150 x 250 in cross section and length of 3000mm were considered in this study. All the beams were tested in four-point bending over a simple span of 2800 mm. Of the above five beams, one beam served as reference beam and the other four beams were HyFRP laminated. The variables considered in this study included thickness of HyFRP laminate and composite ratio. Adequate measurement was acquired on load and deflection characteristic of HyFRP strengthened as well as reference beam.

2019 ◽  
Vol 42 ◽  
pp. e44212
Author(s):  
Ricardo José Carvalho Silva ◽  
Antônio Eduardo Bezerra Cabral ◽  
Francisco Eudázio Suriano da Silva Júnior ◽  
José Leonézio Lopes de Vasconcelos Filho ◽  
David Ermerson Farias Eugênio

The application of carbon fiber reinforced polymers (CFRP) as method of strengthening for concrete structures is replacing the conventional strengthening through the bonding of steel plates. However, since it is a recent technique, several codes from different countries still do not consider this type of strengthening. In this work, seven reinforced concrete beams were tested and analyzed. One was used as a reference beam and six were strengthened through the application of CFRP, with some variations regarding the strengthening, with the aim of verifying the efficiency of each system compared to the reference beam. For the computational analysis, the software ANSYS was used along with the plugin ACP (ANSYS Composite PrepPost), by comparing the results obtained in the simulation of the experimental results. Through the laboratory tests and the finite element simulation, it was concluded that the strengthening was efficient in all situations, but it was less efficient in cases where the strengthening was extended to the regions of simple flexure without proper anchorage. It was also possible to notice that the behavior of the simulated beams properly represented the reality, with the beams behaving comparably to the beams of the experimental test.


2011 ◽  
Vol 255-260 ◽  
pp. 3077-3081 ◽  
Author(s):  
Lang Ni Deng ◽  
Hua Chen ◽  
Kan Kang

Four medium -scale reinforced concrete beams were constructed and tested to investigate the effectiveness of external poststrengthening with prestressed carbon fiber reinforced polymer (CFRP) plates. The various variables included the strengthening method and the amount of prestressing. The experiments consisted of one control beam, one nonprestressed CFRP-bonded beam, and two prestressed CFRP-bonded beams, all the beams were subjected to four-point bending tests. In comparison to the control beam and the nonprestressed CFRP-bonded beam, the cracking load, yield load, ultimate load and stiffness of the beams with bonded prestressed CFRP plates were increased. The failure mode of the prestressed CFRP-plated beams was not debonding, but concrete crushing. After the debonding of the CFRP plates, the behaviour of the bonded CFRP-plated beams changed to that of unbonded CFRP-plated beams due to the effect of the anchorage system. The ductility of the beams strengthened with CFRP plates having the anchorage system was considered high if the ductility index was above 3.


2019 ◽  
Vol 9 (14) ◽  
pp. 2838 ◽  
Author(s):  
Sayed Mohamad Soleimani ◽  
Sajjad Sayyar Roudsari

During dynamic events (such as impact forces), structures fail to absorb the incoming energy and catastrophic collapse may occur. Impact and quasi-static tests were carried out on reinforced concrete beams with and without externally bounded sprayed and fabric glass fiber-reinforced polymers. For impact loading, a fully instrumented drop-weight impact machine with a capacity of 14.5 kJ was used. The drop height and loading rate were varied. The load-carrying capacity of reinforced concrete beams under impact loading was obtained using instrumented anvil supports (by summing the support reactions). In quasi-static loading conditions, the beams were tested in three-point loading using a Baldwin Universal Testing Machine. ABAQUS FEA software was used to model some of the tested reinforced concrete beams. It was shown that the stiffness of reinforced concrete beams decreases with increasing drop height. It was also shown that applying sprayed glass fiber-reinforced polymers (with and without mechanical stiffeners) and fabric glass fiber-reinforced polymers on the surface of reinforced concrete beams increased the stiffness. Results obtained from the software analyses were in good agreement with the laboratory test results.


Sign in / Sign up

Export Citation Format

Share Document