Failure Mode Analyses of Reinforced Concrete Beams Strengthened in Flexure with Externally Bonded Fiber-Reinforced Polymers

2004 ◽  
Vol 8 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Henrik Thomsen ◽  
Enrico Spacone ◽  
Suchart Limkatanyu ◽  
Guido Camata
2019 ◽  
Vol 9 (14) ◽  
pp. 2838 ◽  
Author(s):  
Sayed Mohamad Soleimani ◽  
Sajjad Sayyar Roudsari

During dynamic events (such as impact forces), structures fail to absorb the incoming energy and catastrophic collapse may occur. Impact and quasi-static tests were carried out on reinforced concrete beams with and without externally bounded sprayed and fabric glass fiber-reinforced polymers. For impact loading, a fully instrumented drop-weight impact machine with a capacity of 14.5 kJ was used. The drop height and loading rate were varied. The load-carrying capacity of reinforced concrete beams under impact loading was obtained using instrumented anvil supports (by summing the support reactions). In quasi-static loading conditions, the beams were tested in three-point loading using a Baldwin Universal Testing Machine. ABAQUS FEA software was used to model some of the tested reinforced concrete beams. It was shown that the stiffness of reinforced concrete beams decreases with increasing drop height. It was also shown that applying sprayed glass fiber-reinforced polymers (with and without mechanical stiffeners) and fabric glass fiber-reinforced polymers on the surface of reinforced concrete beams increased the stiffness. Results obtained from the software analyses were in good agreement with the laboratory test results.


Author(s):  
K. Pradeeba ◽  
◽  
Dr. A. Rajasekaran ◽  

This paper enumerates the effectiveness of externally bonded Hybrid Fiber Reinforced Polymers (HyFRP) laminates on reinforced concrete beams for flexural strengthening. A total of 5reinforced concrete beams of size 150 x 250 in cross section and length of 3000mm were considered in this study. All the beams were tested in four-point bending over a simple span of 2800 mm. Of the above five beams, one beam served as reference beam and the other four beams were HyFRP laminated. The variables considered in this study included thickness of HyFRP laminate and composite ratio. Adequate measurement was acquired on load and deflection characteristic of HyFRP strengthened as well as reference beam.


Concrete, a mixture of different aggregates bonded with cement, first developed around 150BC in Rome has been bedrock to the modern Infrastructure. It is used to build everything from roads, bridges, dams to sky scrapers. Strengthening concrete is traditionally done by using steels but the developments in technology in recent decades allowed to use fiber reinforced plastics which are externally bonded to concrete . Such composite materials offer high strength, low weight, corrosion resistance, high fatigue resistance, easy and rapid installation and minimal change in structural geometry. This study investigates the behavior of reinforced concrete beams bonded with fiber composites. A numerical study is conducted to study the behavior of RC beam under Static third point loading. Concrete beam specimens with dimensions of 150 mm width, 300 mm height, and 2600 mm length are modelled. These beams are externally bonded with Glass Fiber Reinforced Polymer (GFRP) sheets and Carbon Fibre Reinforced Polymer (CFRP) sheets. In present study, we examine the performance of reinforced concrete beams which are bonded with GFRP and CFRP sheets with various thicknesses (1, 2 & 3 mm) using ABAQUS in terms of failure modes, enhancement of load capacity, load-deflection analysis and flexural behaviour


Sign in / Sign up

Export Citation Format

Share Document