scholarly journals Independent Domination Number in Adaptive Mesh Refinement (AMR)-WENO Scheme Networks

Let G be the graph, consider the vertex set as V and edge set as E. If S is the subset of the vertex set V such that S contains vertices which has atleast one neighbor in V that is not in S, then S is said to be dominating set of G. If the vertex in S is not adjacent to one another, then S is called as the independent dominating set of G and so i(G) represents the independent domination number, the minimum cardinality of an independent dominating set in G. In this paper, we obtain independent domination number for triangular, quadrilateral, pentagonal, hexagonal, heptagonal and octagonal networks by Adaptive Mesh Refinement (AMR)-WENO Scheme.

2020 ◽  
Vol 9 (11) ◽  
pp. 9335-9339
Author(s):  
N. Senthurpriya ◽  
S. Meenakshi ◽  
P. Punithavathi

Let G(V,E) be a graph, V has a subset C, this set is an non-empty subset of V and the vertices in C is adjacent to the minimum of one vertex of the set V, then G has the dominating set C. If there is no adjacency between the vertices of C, then G has an independent dominating set C and so the number of vertices present in the set C represents the IDN, the minimum cardinality of the sets C. Here in our research, we find the same for some special networks, namely the polygons with nine, ten and eleven sides by above mentioned Scheme.


Let V be the vertex set and E be the edge set of a graph G, the vertex set V has a subset S such that S contains vertices which is adjacent to atleast one vertex in V which is not in S, then S is said to be dominating set of G. If the vertex in S is not adjacent to each other, then S is said to be independent dominating set of G and so i(G) denotes the independent domination number, the minimum cardinality of an independent dominating set in G. In this paper, we obtain independent domination number for a triangular snake, alternate triangular snake, double triangular snake, alternate double triangular snake, quadrilateral snake, alternate quadrilateral snake, double quadrilateral snake and alternate double quadrilateral snake graphs.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 820
Author(s):  
Pu Wu ◽  
Huiqin Jiang ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Zehui Shao ◽  
...  

A set S ⊆ V ( G ) in a graph G is a dominating set if every vertex of G is either in S or adjacent to a vertex of S . A dominating set S is independent if any pair of vertices in S is not adjacent. The minimum cardinality of an independent dominating set on a graph G is called the independent domination number i ( G ) . A graph G is independent domination stable if the independent domination number of G remains unchanged under the removal of any vertex. In this paper, we study the basic properties of independent domination stable graphs, and we characterize all independent domination stable trees and unicyclic graphs. In addition, we establish bounds on the order of independent domination stable trees.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


Author(s):  
Ammar Babikir ◽  
Magda Dettlaff ◽  
Michael A. Henning ◽  
Magdalena Lemańska

AbstractA set S of vertices in a graph G is a dominating set if every vertex not in S is ad jacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. The independent domination subdivision number $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the independent domination number. We show that for every connected graph G on at least three vertices, the parameter $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is well defined and differs significantly from the well-studied domination subdivision number $$\mathrm{sd_\gamma }(G)$$ sd γ ( G ) . For example, if G is a block graph, then $$\mathrm{sd_\gamma }(G) \le 3$$ sd γ ( G ) ≤ 3 , while $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) can be arbitrary large. Further we show that there exist connected graph G with arbitrarily large maximum degree $$\Delta (G)$$ Δ ( G ) such that $$ \hbox {sd}_{\mathrm{i}}(G) \ge 3 \Delta (G) - 2$$ sd i ( G ) ≥ 3 Δ ( G ) - 2 , in contrast to the known result that $$\mathrm{sd_\gamma }(G) \le 2 \Delta (G) - 1$$ sd γ ( G ) ≤ 2 Δ ( G ) - 1 always holds. Among other results, we present a simple characterization of trees T with $$ \hbox {sd}_{\mathrm{i}}(T) = 1$$ sd i ( T ) = 1 .


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2018 ◽  
Vol 10 (02) ◽  
pp. 1850024
Author(s):  
Nuttawoot Nupo ◽  
Sayan Panma

Let [Formula: see text] denote the Cayley digraph of the rectangular group [Formula: see text] with respect to the connection set [Formula: see text] in which the rectangular group [Formula: see text] is isomorphic to the direct product of a group, a left zero semigroup, and a right zero semigroup. An independent dominating set of [Formula: see text] is the independent set of elements in [Formula: see text] that can dominate the whole elements. In this paper, we investigate the independent domination number of [Formula: see text] and give more results on Cayley digraphs of left groups and right groups which are specific cases of rectangular groups. Moreover, some results of the path independent domination number of [Formula: see text] are also shown.


Author(s):  
P. Nataraj ◽  
R. Sundareswaran ◽  
V. Swaminathan

In a simple, finite and undirected graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is said to be a degree equitable dominating set if for every [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] denotes the degree of [Formula: see text] in [Formula: see text]. The minimum cardinality of such a dominating set is denoted by [Formula: see text] and is called the equitable domination number of [Formula: see text]. In this paper, we introduce Complementary Equitably Totally Disconnected Equitable domination in graphs and obtain some interesting results. Also, we discuss some bounds of this new domination parameter.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050072
Author(s):  
A. Mahmoodi ◽  
L. Asgharsharghi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. An outer-paired dominating set [Formula: see text] of a graph [Formula: see text] is a dominating set such that the subgraph induced by [Formula: see text] has a perfect matching. The outer-paired domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of an outer-paired dominating set of [Formula: see text]. In this paper, we study the outer-paired domination number of graphs and present some sharp bounds concerning the invariant. Also, we characterize all the trees with [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document