Independent domination number in Cayley digraphs of rectangular groups

2018 ◽  
Vol 10 (02) ◽  
pp. 1850024
Author(s):  
Nuttawoot Nupo ◽  
Sayan Panma

Let [Formula: see text] denote the Cayley digraph of the rectangular group [Formula: see text] with respect to the connection set [Formula: see text] in which the rectangular group [Formula: see text] is isomorphic to the direct product of a group, a left zero semigroup, and a right zero semigroup. An independent dominating set of [Formula: see text] is the independent set of elements in [Formula: see text] that can dominate the whole elements. In this paper, we investigate the independent domination number of [Formula: see text] and give more results on Cayley digraphs of left groups and right groups which are specific cases of rectangular groups. Moreover, some results of the path independent domination number of [Formula: see text] are also shown.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1411
Author(s):  
Magda Dettlaff ◽  
Magdalena Lemańska ◽  
Jerzy Topp

The cardinality of a largest independent set of G, denoted by α(G), is called the independence number of G. The independent domination number i(G) of a graph G is the cardinality of a smallest independent dominating set of G. We introduce the concept of the common independence number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs to some independent subset X of VG with |X|≥r. The common independence number αc(G) of G is the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set in G. For any graph G, the relations between above parameters are given by the chain of inequalities i(G)≤αc(G)≤α(G). In this paper, we characterize the trees T for which i(T)=αc(T), and the block graphs G for which αc(G)=α(G).


Author(s):  
Ammar Babikir ◽  
Magda Dettlaff ◽  
Michael A. Henning ◽  
Magdalena Lemańska

AbstractA set S of vertices in a graph G is a dominating set if every vertex not in S is ad jacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. The independent domination subdivision number $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the independent domination number. We show that for every connected graph G on at least three vertices, the parameter $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) is well defined and differs significantly from the well-studied domination subdivision number $$\mathrm{sd_\gamma }(G)$$ sd γ ( G ) . For example, if G is a block graph, then $$\mathrm{sd_\gamma }(G) \le 3$$ sd γ ( G ) ≤ 3 , while $$ \hbox {sd}_{\mathrm{i}}(G)$$ sd i ( G ) can be arbitrary large. Further we show that there exist connected graph G with arbitrarily large maximum degree $$\Delta (G)$$ Δ ( G ) such that $$ \hbox {sd}_{\mathrm{i}}(G) \ge 3 \Delta (G) - 2$$ sd i ( G ) ≥ 3 Δ ( G ) - 2 , in contrast to the known result that $$\mathrm{sd_\gamma }(G) \le 2 \Delta (G) - 1$$ sd γ ( G ) ≤ 2 Δ ( G ) - 1 always holds. Among other results, we present a simple characterization of trees T with $$ \hbox {sd}_{\mathrm{i}}(T) = 1$$ sd i ( T ) = 1 .


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 820
Author(s):  
Pu Wu ◽  
Huiqin Jiang ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Zehui Shao ◽  
...  

A set S ⊆ V ( G ) in a graph G is a dominating set if every vertex of G is either in S or adjacent to a vertex of S . A dominating set S is independent if any pair of vertices in S is not adjacent. The minimum cardinality of an independent dominating set on a graph G is called the independent domination number i ( G ) . A graph G is independent domination stable if the independent domination number of G remains unchanged under the removal of any vertex. In this paper, we study the basic properties of independent domination stable graphs, and we characterize all independent domination stable trees and unicyclic graphs. In addition, we establish bounds on the order of independent domination stable trees.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


Author(s):  
P. Jeyalakshmi ◽  
K. Karuppasamy ◽  
S. Arockiaraj

Let [Formula: see text] be a signed graph. A dominating set [Formula: see text] is said to be an independent dominating set of [Formula: see text] if [Formula: see text] is a fully negative. In this paper, we initiate a study of this parameter. We also establish the bounds and characterization on the independent domination number of a signed graph.


2012 ◽  
Vol 45 (1) ◽  
Author(s):  
Marcin Krzywkowski

AbstractA vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph


Let G be the graph, consider the vertex set as V and edge set as E. If S is the subset of the vertex set V such that S contains vertices which has atleast one neighbor in V that is not in S, then S is said to be dominating set of G. If the vertex in S is not adjacent to one another, then S is called as the independent dominating set of G and so i(G) represents the independent domination number, the minimum cardinality of an independent dominating set in G. In this paper, we obtain independent domination number for triangular, quadrilateral, pentagonal, hexagonal, heptagonal and octagonal networks by Adaptive Mesh Refinement (AMR)-WENO Scheme.


Let V be the vertex set and E be the edge set of a graph G, the vertex set V has a subset S such that S contains vertices which is adjacent to atleast one vertex in V which is not in S, then S is said to be dominating set of G. If the vertex in S is not adjacent to each other, then S is said to be independent dominating set of G and so i(G) denotes the independent domination number, the minimum cardinality of an independent dominating set in G. In this paper, we obtain independent domination number for a triangular snake, alternate triangular snake, double triangular snake, alternate double triangular snake, quadrilateral snake, alternate quadrilateral snake, double quadrilateral snake and alternate double quadrilateral snake graphs.


10.37236/6026 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Sándor Bozóki ◽  
Péter Gál ◽  
István Marosi ◽  
William D. Weakley

The queens graph $Q_{m \times n}$ has the squares of the $m \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal of the board. A set $D$ of squares of $Q_{m \times n}$ is a dominating set for $Q_{m \times n}$ if every square of $Q_{m \times n}$ is either in $D$ or adjacent to a square in $D$. The minimum size of a dominating set of $Q_{m \times n}$ is the domination number, denoted by $\gamma(Q_{m \times n})$. Values of $\gamma(Q_{m \times n}), \, 4 \leq m \leq n \leq 18,\,$ are given here, in each case with a file of minimum dominating sets (often all of them, up to symmetry) in an online appendix. In these ranges for $m$ and $n$, monotonicity fails once: $\gamma(Q_{8\times 11}) = 6 > 5 = \gamma(Q_{9 \times 11}) = \gamma(Q_{10 \times 11}) = \gamma(Q_{11 \times 11})$. Let $g(m)$ [respectively $g^{*}(m)$] be the largest integer such that $m$ queens suffice to dominate the $(m+1) \times g(m)$ board [respectively, to dominate the $(m+1) \times g^{*}(m)$ board with no two queens in a row]. Starting from the elementary bound $g(m) \leq 3m$, domination when the board is far from square is investigated. It is shown (Theorem 2) that $g(m) = 3m$ can only occur when $m \equiv 0, 1, 2, 3, \mbox{or } 4 \mbox{ (mod 9)}$, with an online appendix showing that this does occur for $m \leq 40, m \neq 3$. Also (Theorem 4), if $m \equiv 5, 6, \mbox{or } 7 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-2$, and if $m \equiv 8 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-4$. It is shown that equality holds in these bounds for $m \leq 40 $. Lower bounds on $\gamma(Q_{m \times n})$ are given. In particular, if $m \leq n$ then $\gamma(Q_{m \times n}) \geq \min \{ m,\lceil (m+n-2)/4 \rceil \}$. Two types of dominating sets (orthodox covers and centrally strong sets) are developed; each type is shown to give good upper bounds of $\gamma(Q_{m \times n})$ in several cases. Three questions are posed: whether monotonicity of $\gamma(Q_{m \times n})$ holds (other than from $(m, n) = (8, 11)$ to $(9, 11)$), whether $\gamma(Q_{m \times n}) = (m+n-2)/4$ occurs with $m \leq n < 3m+2$ (other than for $(m, n) = (3, 3)$ and $(11, 11)$), and whether the lower bound given above can be improved. A set of squares is independent if no two of its squares are adjacent. The minimum size of an independent dominating set of $Q_{m \times n}$ is the independent domination number, denoted by $i(Q_{m \times n})$. Values of $i(Q_{m \times n}), \, 4 \leq m \leq n \leq 18, \,$ are given here, in each case with some minimum dominating sets. In these ranges for $m$ and $n$, monotonicity fails twice: $i(Q_{8\times 11}) = 6 > 5 = i(Q_{9 \times 11}) = i(Q_{10 \times 11}) = i(Q_{11 \times 11})$, and $i(Q_{11 \times 18}) = 9 > 8 = i(Q_{12\times 18})$.


2020 ◽  
Vol 9 (11) ◽  
pp. 9335-9339
Author(s):  
N. Senthurpriya ◽  
S. Meenakshi ◽  
P. Punithavathi

Let G(V,E) be a graph, V has a subset C, this set is an non-empty subset of V and the vertices in C is adjacent to the minimum of one vertex of the set V, then G has the dominating set C. If there is no adjacency between the vertices of C, then G has an independent dominating set C and so the number of vertices present in the set C represents the IDN, the minimum cardinality of the sets C. Here in our research, we find the same for some special networks, namely the polygons with nine, ten and eleven sides by above mentioned Scheme.


Sign in / Sign up

Export Citation Format

Share Document