scholarly journals Network Fundamental Diagram Based Routing of Vehicle Fleets in Dynamic Traffic Simulations

Author(s):  
Florian Dandl ◽  
Gabriel Tilg ◽  
Majid Rostami-Shahrbabaki ◽  
Klaus Bogenberger

The growing popularity of mobility-on-demand fleets increases the importance to understand the impact of mobility-on-demand fleets on transportation networks and how to regulate them. For this purpose, transportation network simulations are required to contain corresponding routing methods. We study the trade-off between computational efficiency and routing accuracy of different approaches to routing fleets in a dynamic network simulation with endogenous edge travel times: a computationally cheap but less accurate Network Fundamental Diagram (NFD) based method and a more typical Dynamic Traffic Assignment (DTA) based method. The NFD-based approach models network dynamics with a network travel time factor that is determined by the current average network speed and scales free-flow travel times. We analyze the different computational costs of the approaches in a case study for 10,000 origin-destination (OD) pairs in a network of the city of Munich, Germany that reveals speedup factors in the range of 100. The trade-off for this is less accurate travel time estimations for individual OD pairs. Results indicate that the NFD-based approach overestimates the DTA-based travel times, especially when the network is congested. Adjusting the network travel time factor based on pre-processed DTA results, the NFD-based routing approach represents a computationally very efficient methodology that also captures traffic dynamics in an aggregated way.

2020 ◽  
Author(s):  
Florian Dandl ◽  
Gabriel Tilg ◽  
Majid Rostami-Shahrbabaki ◽  
Klaus Bogenberger

The growing popularity of mobility-on-demand fleets increases the importance to understand the impact of mobility-on-demand fleets on transportation networks and how to regulate them. For this purpose, transportation network simulations are required to contain corresponding routing methods. We study the trade-off between computational efficiency and routing accuracy of different approaches to routing fleets in a dynamic network simulation with endogenous edge travel times: a computationally cheap but less accurate Network Fundamental Diagram (NFD) based method and a more typical Dynamic Traffic Assignment (DTA) based method. The NFD-based approach models network dynamics with a network travel time factor that is determined by the current average network speed and scales free-flow travel times. We analyze the different computational costs of the approaches in a case study for 10,000 origin-destination (OD) pairs in a network of the city of Munich, Germany that reveals speedup factors in the range of 100. The trade-off for this is less accurate travel time estimations for individual OD pairs. Results indicate that the NFD-based approach overestimates the DTA-based travel times, especially when the network is congested. Adjusting the network travel time factor based on pre-processed DTA results, the NFD-based routing approach represents a computationally very efficient methodology that also captures traffic dynamics in an aggregated way.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chengjuan Zhu ◽  
Bin Jia ◽  
Linghui Han ◽  
Ziyou Gao

In order to investigate different route choice criteria in a competitive highway/park-and-ride (P&R) network with uncertain travel times on the road, a bilevel programming model for solving the problem of determining parking fees and modal split is presented. In the face of travel time uncertainty, travelers plan their trips with a prespecified on-time arrival probability. The impact of three route choice criteria: the mean travel time, the travel time budget, and mean-excess travel time, is compared for parking pricing and modal split. The model at user equilibrium is described as a minimization model. And the analytic solutions are given. Analytic solutions show that both flow and travel time at equilibrium are independent of the price difference of travel expense on money. The main findings from the numerical results are elaborated. While given a confidence level, the flow on the highway changed significantly with the criteria, although the differences of the travel times are small. Travelers can be guided to choose their modes coordinately by improving the quality of the transit service. The optimal parking fees can be affected markedly by the confidence level. Finally, the influence of the log-normal distribution parameters is tested and analyzed.


2021 ◽  
Author(s):  
Zhaoqi Zang ◽  
Xiangdong Xu ◽  
Anthony Chen ◽  
Chao Yang

AbstractNetwork capacity, defined as the largest sum of origin–destination (O–D) flows that can be accommodated by the network based on link performance function and traffic equilibrium assignment, is a critical indicator of network-wide performance assessment in transportation planning and management. The typical modeling rationale of estimating network capacity is to formulate it as a mathematical programming (MP), and there are two main approaches: single-level MP formulation and bi-level programming (BLP) formulation. Although single-level MP is readily solvable, it treats the transportation network as a physical network without considering level of service (LOS). Albeit BLP explicitly models the capacity and link LOS, solving BLP in large-scale networks is challenging due to its non-convexity. Moreover, the inconsideration of trip LOS makes the existing models difficult to differentiate network capacity under various traffic states and to capture the impact of emerging trip-oriented technologies. Therefore, this paper proposes the α-max capacity model to estimate the maximum network capacity under trip or O–D LOS requirement α. The proposed model improves the existing models on three aspects: (a) it considers trip LOS, which can flexibly estimate the network capacity ranging from zero to the physical capacity including reserve, practical and ultimate capacities; (b) trip LOS can intuitively reflect users’ maximum acceptable O–D travel time or planners’ requirement of O–D travel time; and (c) it is a convex and tractable single-level MP. For practical use, we develop a modified gradient projection solution algorithm with soft constraint technique, and provide methods to obtain discrete trip LOS and network capacity under representative traffic states. Numerical examples are presented to demonstrate the features of the proposed model as well as the solution algorithm.


Author(s):  
Mecit Cetin ◽  
George F. List ◽  
Yingjie Zhou

Using probe vehicles rather than other detection technologies has great value, especially when travel time information is sought in a transportation network. Even though probes enable direct measurement of travel times across links, the quality or reliability of a system state estimate based on such measurements depends heavily on the number of probe observations across time and space. Clearly, it is important to know what level of travel time reliability can be achieved from a given number of probes. It is equally important to find ways (other than increasing the sample size of probes) of improving the reliability in the travel time estimate. This paper provides two new perspectives on those topics. First, the probe estimation problem is formulated in the context of estimating travel times. Second, a method is introduced to create a virtual network by inserting dummy nodes in the midpoints of links to enhance the ability to estimate travel times further in a way that is more consistent with the processing that vehicles receive. Numerical experiments are presented to illustrate the value of those ideas.


2020 ◽  
Vol 24 (3) ◽  
pp. 1189-1209 ◽  
Author(s):  
Christopher Vincent Henri ◽  
Thomas Harter ◽  
Efstathios Diamantopoulos

Abstract. Non-point source (NPS) pollution has degraded groundwater quality of unconsolidated sedimentary basins over many decades. Properly conceptualizing NPS pollution from the well scale to the regional scale leads to complex and expensive numerical models: key controlling factors of NPS pollution – recharge rate, leakage of pollutants, and soil and aquifer hydraulic properties – are spatially and, for recharge and pollutant leakage, temporally variable. This leads to high uncertainty in predicting well pollution. On the other hand, concentration levels of some key NPS contaminants (salinity, nitrate) vary within a limited range (< 2 orders of magnitude), and significant mixing occurs across the aquifer profile along the most critical compliance surface: drinking water wells with their extended vertical screen length. Given these two unique NPS contamination conditions, we here investigate the degree to which NPS travel time to wells and the NPS source area associated with an individual well can be appropriately captured, for practical applications, when spatiotemporally variable recharge, contaminant leakage rates, or hydraulic conductivity are represented through a sub-regionally homogenized parametrization. We employ a Monte Carlo-based stochastic framework to assess the impact of model homogenization on key management metrics for NPS contamination. Results indicate that travel time distributions are relatively insensitive to the spatial variability of recharge and contaminant loading, while capture zone and contaminant time series exhibit some sensitivity to source variability. In contrast, homogenization of aquifer heterogeneity significantly affects the uncertainty assessment of travel times and capture zone delineation. Surprisingly, the statistics of relevant NPS well concentrations (fast and intermediate travel times) are fairly well reproduced by a series of equivalent homogeneous aquifers, highlighting the dominant role of NPS solute mixing along well screens.


2020 ◽  
Vol 33 (12) ◽  
pp. 5750-5783
Author(s):  
Ross Levine ◽  
Chen Lin ◽  
Qilin Peng ◽  
Wensi Xie

Abstract We investigate how communication within banks affects small business lending. Using travel times between a bank’s headquarters and its branches to proxy for the costs of communicating soft information, we exploit shocks to these travel times—the introduction of new airline routes—to evaluate the impact of within-bank communication costs on small business loans. We find that reducing headquarters-branch travel time boosts small business lending in the branch’s county. Several extensions suggest that new airline routes facilitate in-person communications that boost small-firm lending.


2003 ◽  
Vol 1854 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Henry X. Liu ◽  
Xuegang Ban ◽  
Bin Ran ◽  
Pitu Mirchandani

An issue that is always important in the development of traffic assignment models is how travelers' perceptions of travel time should be modeled. Because travelers rarely have perfect knowledge of the road network or of the travel conditions, they choose routes on the basis of their perceived travel times. Traditionally, travelers' perceived travel times are treated as random variables, leading to the stochastic traffic assignment problem. However, uncertain factors are also observed in the subjective recognition of travel times by travelers, and these can be illustrated as fuzzy variables. Therefore, a fuzzy dynamic traffic assignment model that takes into account the imprecision and the uncertainties in the route choice process is proposed. By modeling the expressions of perceived travel times as fuzzy variables, this model makes possible the description of a traveler's process of choosing a route that is more accurate and realistic than those from its deterministic or stochastic counter parts. The fuzzy perceived link travel time and fuzzy perceived path travel time are defined, and a fuzzy shortest path algorithm is used to find the group of fuzzy shortest paths and to assign traffic to each of them by using the so-called C-logit method. The results of the proposed model are also compared with those from the stochastic dynamic traffic assignment model, and it is demonstrated that the impact of advanced traveler information systems on the traveler's route choice process can be readily incorporated into the proposed model.


Author(s):  
Fan Yang ◽  
Henry X. Liu ◽  
Rachel R. He ◽  
Xuegang Ban ◽  
Bin Ran

With the fast-growing telematics market and maturing traffic-information services, telematics devices provide a feasible means with which to manage traffic more efficiently. The provision of traffic information to travelers usually involves different parties that have distinctive objectives: travelers are concerned with benefits of travel-time savings at an affordable service charge, private information service providers (ISPs) seek to provide marketable information services from which they can derive a profit, and traffic management centers (TMCs) have the responsibility to maintain and improve system performance, especially to minimize the total system travel time. How transportation system managers can analyze the trade-offs among these objectives and adjust this new traffic-information flow diagram to improve system performance remains an open question. The trade-offs needed among the conflicting multiple objectives of different parties are studied, and traffic system performance is analyzed. The complex traffic network is formulated as a bilevel program. The upper level can be formulated by using various objective functions, such as the objectives for ISP and TMC. The lower level is a multiclass dynamic traffic-assignment model, which determines dynamic traffic flows in the network by considering the information dissemination strategies provided by the upper-level model. Numerical results of a small network are provided to illustrate the behavior of this model, and they prove that when there is congestion in the dynamic transportation network, appropriate subscribed rates benefit both all travelers and system performance, while the ISPs’ information influences little without congestion in the transportation network.


Sign in / Sign up

Export Citation Format

Share Document