scholarly journals ANN-based Shear Capacity of Steel Fiber-Reinforced Concrete Beams Without Stirrups

Author(s):  
Miguel Abambres ◽  
Lantsoght E

<p>Comparing experimental results on the shear capacity of steel fiber-reinforced concrete (SFRC) beams without mild steel stirrups, to the ones predicted by current design equations and other available formulations, still shows significant differences. In this paper we propose the use of artificial intelligence to estimate the shear capacity of these members. A database of 430 test results reported in the literature is used to develop an artificial neural network-based formula that predicts the shear capacity of SFRC beams without shear reinforcement. The proposed model yields maximum and mean relative errors of 0.0% for the 430 data points, which represents a better prediction (mean <i>V<sub>test</sub> / V<sub>ANN</sub></i> = 1.00 with a coefficient of variation of 1× 10<sup>-15</sup>) than the existing expressions, where the best model yields a mean value of <i>V<sub>test </sub>/ V<sub>pred</sub></i> = 1.01 and a coefficient of variation of 27%.</p>

2019 ◽  
Author(s):  
Miguel Abambres ◽  
Eva Olivia Leontien Lantsoght

Comparing experimental results on the shear capacity of steel fiber-reinforced concrete (SFRC) beams without mild steel stirrups, to the ones predicted by current design equations and other available formulations, still shows significant differences. In this paper we propose the use of artificial intelligence to estimate the shear capacity of these members. A database of 430 test results reported in the literature is used to develop an artificial neural network-based formula that predicts the shear capacity of SFRC beams without shear reinforcement. The proposed model yields maximum and mean relative errors of 0.0% for the 430 data points, which represents a better prediction (mean Vtest / VANN = 1.00 with a coefficient of variation of 1E-15) than the existing expressions, where the best model yields a mean value of Vtest / Vpred = 1.01 and a coefficient of variation of 27%.


2020 ◽  
Author(s):  
Abambres M ◽  
Lantsoght E

<p>Comparing experimental results on the shear capacity of steel fiber-reinforced concrete (SFRC) beams without mild steel stirrups, to the ones predicted by current design equations and other available formulations, still shows significant differences. In this paper we propose the use of artificial intelligence to estimate the shear capacity of these members. A database of 430 test results reported in the literature is used to develop an artificial neural network-based formula that predicts the shear capacity of SFRC beams without shear reinforcement. The proposed model yields maximum and mean relative errors of 0.0% for the 430 data points, which represents a better prediction (mean <i>V<sub>test</sub> / V<sub>ANN</sub></i> = 1.00 with a coefficient of variation of 1× 10<sup>-15</sup>) than the existing expressions, where the best model yields a mean value of <i>V<sub>test </sub>/ V<sub>pred</sub></i> = 1.01 and a coefficient of variation of 27%.</p>


2020 ◽  
Author(s):  
Abambres M ◽  
Lantsoght E

<p>Comparing experimental results on the shear capacity of steel fiber-reinforced concrete (SFRC) beams without mild steel stirrups, to the ones predicted by current design equations and other available formulations, still shows significant differences. In this paper we propose the use of artificial intelligence to estimate the shear capacity of these members. A database of 430 test results reported in the literature is used to develop an artificial neural network-based formula that predicts the shear capacity of SFRC beams without shear reinforcement. The proposed model yields maximum and mean relative errors of 0.0% for the 430 data points, which represents a better prediction (mean <i>V<sub>test</sub> / V<sub>ANN</sub></i> = 1.00 with a coefficient of variation of 1× 10<sup>-15</sup>) than the existing expressions, where the best model yields a mean value of <i>V<sub>test </sub>/ V<sub>pred</sub></i> = 1.01 and a coefficient of variation of 27%.</p>


2012 ◽  
Vol 256-259 ◽  
pp. 926-929
Author(s):  
Li Bing Jin ◽  
De Cai Chen ◽  
Ji Peng Qi

In order to study the shear capacity enhancement effect of prestressed technology to steel fiber reinforced concrete, the practical formulas were proposed for evaluating the shear-strength of unbonded prestressed steel-fiber reinforced concrete beams (UPSFRCB) through the test and study of shear capacity of UPSFRCB with simply supported ends. Various factors affecting the shear strength of UPSFRCB, such as steel fiber, prestress and shear-span to depth ratio were analyzed. The result is of importance to the popularization and application of prestressed steel-fiber reinforced concrete.


Fibers ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 102 ◽  
Author(s):  
Juan Andres Torres ◽  
Eva O.L. Lantsoght

For shear-critical structural elements where the use of stirrups is not desirable, such as slabs or beams with reinforcement congestion, steel fibers can be used as shear reinforcement. The contribution of the steel fibers to the shear capacity lies in the action of the steel fibers bridging the shear crack, which increases the shear capacity and prevents a brittle failure mode. This study evaluates the effect of the amount of fibers in a concrete mix on the shear capacity of steel fiber-reinforced concrete beams with mild steel tension reinforcement and without stirrups. For this purpose, 10 beams were tested. Five different fiber volume fractions were studied: 0.0%, 0.3%, 0.6%, 0.9%, and 1.2%. For each different steel fiber concrete mix, the concrete compressive strength was determined on cylinders and the tensile strength was determined in a flexural test on beam specimens. Additionally, the influence of fibers on the shear capacity was analyzed based on results reported in the literature, as well as based on the expressions derived for estimating the shear capacity of steel fiber-reinforced concrete beams. The outcome of these experiments is that a fiber percentage of 1.2% or fiber factor of 0.96 can be used to replace minimum stirrups according to ACI 318-14 and a 0.6% fiber volume fraction or fiber factor of 0.48 to replace minimum stirrups according to Eurocode 2. A fiber percentage of 1.2% or fiber factor of 0.96 was observed to change the failure mode from shear failure to flexural failure. The results of this study support the inclusion of provisions for steel fiber-reinforced concrete in building codes and provides recommendations for inclusion in ACI 318-14 and Eurocode 2, so that a wider adoption of steel fiber reinforced concrete can be achieved in the construction industry.


Author(s):  
Eva O.L. Lantsoght

Adding steel fibers to concrete improves the capacity in tension-driven failure modes. An example is the shear capacity in steel fiber reinforced concrete (SFRC) beams with longitudinal reinforcement and without shear reinforcement. Since no mechanical models exist that can fully describe the behavior of SFRC beams without shear reinforcement failing in shear, a number of empirical equations have been suggested in the past. This paper compiles the existing empirical equations and code provisions for the prediction of the shear capacity of SFRC beams failing in shear as well as a database of 487 experiments reported in the literature. The experimental shear capacities from the database are then compared to the prediction equations. This comparison shows a large scatter on the ratio of experimental to predicted values. The practice of defining the tensile strength of SFRC based on different experiments internationally makes the comparison difficult. For design purposes, the code prediction methods based on the Eurocode shear expression provide reasonable results (with coefficients of variation on the ratio of tested to predicted results of 27% - 29%). None of the currently available methods properly describe the behavior of SFRC beams failing in shear. As such, this work shows the need for studies that address the different shear-carrying mechanisms in SFRC and its crack kinematics.


Author(s):  
Juan Andres Torres ◽  
Eva O.L. Lantsoght

For shear-critical structural elements where the use of stirrups is not desirable, such as slabs or beams with reinforcement congestion, steel fibers can be used as shear reinforcement. The contribution of the steel fibers to the shear capacity lies in the action of the steel fibers bridging the shear crack, which increases the shear capacity and prevents a brittle failure mode. This study evaluates the effect of the amount of fibers in a concrete mix on the shear capacity of steel fiber reinforced concrete beams with mild steel tension reinforcement and without stirrups. For this purpose, twelve beams were tested. Five different fiber volume fractions were studied: 0.0%, 0.3%, 0.6%, 0.9%, and 1.2%. For each different steel fiber concrete mix, the concrete compressive strength was determined on cylinders and the tensile strength was determined in a flexural test on beam specimens. Additionally, the influence of fibers on the shear capacity is analyzed based on results reported in the literature, as well as based on the expressions derived for estimating the shear capacity of steel fiber reinforced concrete beams. The outcome of these experiments is that a fiber percentage of 1.2% or fiber factor of 0.96 can be used to replace minimum stirrups according to ACI 318-14 and a 0.6% fiber volume fraction or fiber factor of 0.48 to replace minimum stirrups according to Eurocode 2. A fiber percentage of 1.2% or fiber factor of 0.96 was observed to change the failure mode from shear failure to flexural failure. The results of this presented study support the inclusion of provisions for steel fiber reinforced concrete in building codes and provides recommendations for inclusion in ACI 318-14 and Eurocode 2, so that a wider adoption of steel fiber reinforced concrete can be achieved in the construction industry.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 917 ◽  
Author(s):  
Eva Lantsoght

Adding steel fibers to concrete improves the capacity in tension-driven failure modes. An example is the shear capacity in steel fiber reinforced concrete (SFRC) beams with longitudinal reinforcement and without shear reinforcement. Since no mechanical models exist that can fully describe the behavior of SFRC beams without shear reinforcement failing in shear, a number of empirical equations have been suggested in the past. This paper compiles the existing empirical equations and code provisions for the prediction of the shear capacity of SFRC beams failing in shear as well as a database of 488 experiments reported in the literature. The experimental shear capacities from the database are then compared to the prediction equations. This comparison shows a large scatter on the ratio of experimental to predicted values. The practice of defining the tensile strength of SFRC based on different experiments internationally makes the comparison difficult. For design purposes, the code prediction methods based on the Eurocode shear expression provide reasonable results (with coefficients of variation on the ratio tested/predicted shear capacities of 27–29%). None of the currently available methods properly describe the behavior of SFRC beams failing in shear. As such, this work shows the need for studies that address the different shear-carrying mechanisms in SFRC and its crack kinematics.


Sign in / Sign up

Export Citation Format

Share Document