steel fibers
Recently Published Documents


TOTAL DOCUMENTS

1144
(FIVE YEARS 523)

H-INDEX

43
(FIVE YEARS 13)

Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 95-108
Author(s):  
M. Khan ◽  
S.H. Chu ◽  
X.W. Deng ◽  
Yuhang Wang

2022 ◽  
Vol 14 (2) ◽  
pp. 945
Author(s):  
Nancy Kachouh ◽  
Tamer El-Maaddawy ◽  
Hilal El-Hassan ◽  
Bilal El-Ariss

Replacement of natural aggregates (NAs) with recycled concrete aggregates (RCAs) in complex reinforced concrete (RC) structural elements, such as deep beams with openings, supports environmental sustainability in the construction industry. This research investigates the shear response of RC deep beams with openings made with 100% RCAs. It also examines the effectiveness of using steel fibers as a replacement to the minimum conventional steel stirrups in RCA-based deep beams with web openings. A total of seven RC deep beams with a shear span-to-depth ratio (a/h) of 0.8 were constructed and tested. A circular opening with an opening height-to-depth ratio (h0/h) of 0.3 was placed in the middle of each shear span. Test parameters included the type of the coarse aggregate (NAs and RCAs), steel fiber volume fraction (vf = 1, 2, and 3%), and presence of the minimum conventional steel stirrups. The deep beam specimens with web openings made with 100% RCAs exhibited 13 to 18% reductions in the shear capacity relative to those of their counterparts made with NAs. The inclusion of conventional steel stirrups in RC deep beams with openings was less effective in improving the shear response when 100% RCAs was used. The addition of steel fibers remarkably improved the shear response of the tested RCA-based beams. The gain in the shear capacity of the RCA-based beams caused by the inclusion of steel fibers was in the range of 39 to 84%, whereas the use of conventional steel stirrups resulted in 18% strength gain. The use of 1% steel fiber volume fraction in the RCA-based beam with openings without steel stirrups was sufficient to restore 96% of the original shear capacity of the NA-based beam with conventional steel stirrups. The shear capacities obtained from the tests were compared with predictions of published analytical models. The predicted-to-measured shear capacity was in the range of 0.71 to 1.49.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 542
Author(s):  
Sujjaid Khan ◽  
Longbang Qing ◽  
Iftikhar Ahmad ◽  
Ru Mu ◽  
Mengdi Bi

Aligning steel fibers is an effective way to improve the mechanical properties of steel fiber cementitious composites (SFRC). In this study, the magnetic field method was used to prepare the aligned hooked-end steel fiber cementitious composites (ASFRC) and the fracture behavior was investigated. In order to achieve the alignment of steel fibers, the key parameters including the rheology of the mixture and magnetic induction of electromagnetic field were theoretically analyzed. The results showed that, compared with SFRC, the cracking load and the ultimate load of ASFRC were increased about 24–55% and 51–86%, respectively, depending on the fiber addition content. In addition, the flexural tensile strength and residual flexural strength of ASFRC were found to increase up to 105% and 100%, respectively. The orientation of steel fibers also has a significant effect on energy consumption. The fracture energy of ASFRC was 56–70% greater than SFRC and the reinforcement effect of hooked-end steel fiber was higher than straight steel fiber. The fibers in the fracture surface showed that not only was the number of fibers of ASFRC higher than that of SFRC, but also the orientation efficiency factor of ASFRC was superior to SFRC, which explains the improvement of fracture behavior of ASFRC.


Environments ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Joseph J. Assaad ◽  
Jamal M. Khatib ◽  
Rawan Ghanem

The use of post-consumer plastics in concrete production is an ideal alternative to dispose of such wastes while reducing the environmental impacts in terms of pollution and consumption of natural resources and energy. This paper investigates different approaches (i.e., reducing water-to-cement ratio and incorporating steel fibers or polymeric latexes) that compensate for the detrimental effect of waste plastics on the drop in concrete mechanical properties including the bond to embedded steel bars. The polyethylene terephthalate (PET) wastes used in this study were derived from plastic bottles that were shredded into small pieces and added during concrete batching at 1.5% to 4.5%, by total volume. Test results showed that the concrete properties are degraded with PET additions, given their lightweight nature and poor characteristic strength compared to aggregate particles. The threshold PET volumetric rates are 4.5% and 3% for concrete made using natural or recycled aggregates, respectively. The reduction of w/c from 0.55 to 0.46 proved efficient to refine the matrix porosity and reinstate the concrete performance. The incorporation of 0.8% steel fibers (by volume) or 15% polymers (by mixing water) were appropriate to enhance the bridging phenomena and reduce the propagation of cracks during the pullout loading of steel bars.


Author(s):  
Aaron Kadima Lukanu Lwa Nzambi ◽  
Dênio Ramam Carvalho de Oliveira ◽  
Marcus Vinicius dos Santos Monteiro ◽  
Luiz Felipe Albuquerque da Silva

Abstract Some normative recommendations are conservative in relation to the shear strength of reinforced concrete beams, not directly considering the longitudinal reinforcement rate. An experimental program containing 8 beams of (100 x 250) mm2 and a length of 1,200 mm was carried out. The concrete compression strength was 20 MPa with and without 1.00% of steel fiber addition, without stirrups and varying the longitudinal reinforcement ratio. Comparisons between experimental failure loads and main design codes estimates were assessed. The results showed that the increase of the longitudinal reinforcement ratio from 0.87% to 2.14% in beams without steel fiber led to an improvement of 59% in shear strength caused by the dowel effect, while the corresponding improvement was of only 22% in fibered concrete beams. A maximum gain of 109% in shear strength was observed with the addition of 1% of steel fibers comparing beams with the same longitudinal reinforcement ratio (1.2%). A significant amount of shear strength was provided by the inclusion of the steel fibers and allowed controlling the propagation of cracks by the effect of stress transfer bridges, transforming the brittle shear mechanism into a ductile flexural one. From this, it is clear the shear benefit of the steel fiber addition when associated to the longitudinal reinforcement and optimal values for this relationship would improve results.


2022 ◽  
Vol 961 (1) ◽  
pp. 012066
Author(s):  
Mohammed M Qasim ◽  
Mazin B Abdul Rahman

Abstract Slurry infiltrated fiber concrete” composites (SIFCON) are a novel type of concrete with improved strength, ductility, and crack resistance. In this study, infiltrating fibers (SIFCON) were used to reinforce of specimens of ferrocement one way ribbed slabs. The laboratory work consists of cast and testing of eight specimens with dimensions of 750 mm in length, 500 mm in width and 50 mm in depth. These samples have the same wire mesh reinforcement and the same shape as the ferrocement slabs. Two reference ferrocement slab without ribs contains SIFCON and six ferrocement slabs with ribs contains SIFCON. The variables were the volumetric ratio of fibers in the ribs, which were (2, 4 and 6)% and type of steel fiber (hook-end and hybrid fiber). Hybrid fibers contain two type of steel fiber (hook-end and micro steel fiber) with equal ratio. All samples were tested under line load up to failure with mid deflections for each test with simple supported. The results of the test showed that the presence of steel fibers in the ferrocement ribs, for both types of steel fibers, improves the resistance to the final loads and the ability to reduce deflection and increases the ductility and stiffness significantly.


2022 ◽  
Author(s):  
Facundo Isla ◽  
Paula Argañaraz ◽  
Bibiana María Luccioni

Sign in / Sign up

Export Citation Format

Share Document