scholarly journals An Optimization Method Combining RSSI and PDR Data to Estimate Distance Between Smart Devices

Author(s):  
Bo Zhao ◽  
Chao Zheng ◽  
Xinxin Ren ◽  
Jianrong Dai

Distance estimation methods arise in many applications, such as indoor positioning and Covid-19 contact tracing. The received signal strength indicator (RSSI) is favored in distance estimation. However, the accuracy is not satisfactory due to the signal fluctuation. Besides, the RSSI-only method has a large ranging error because it uses fixed parameters of the path loss model. Here, we propose an optimization method combining RSSI and pedestrian dead reckoning (PDR) data to estimate the distance between smart devices. The PDR may provide the high accuracy of walking distance and direction, which is used to compensate for the effects of interference on the RSSI. Moreover, the parameters of the path loss model are optimized to dynamically fit to the complex electromagnetic environment. The proposed method is evaluated in outdoor and indoor <a>environments</a> and is also compared with the RSSI-only method. The results show that the mean absolute error is reduced up to 0.51 m and 1.02 m, with the improvement of 10.60% and 64.55% for outdoor and indoor environments, respectively, in comparison with the RSSI-only method. Consequently, the proposed optimization method has better accuracy of distance estimation than the RSSI-only method, and its feasibility is demonstrated through real-world evaluations.

2020 ◽  
Author(s):  
Bo Zhao ◽  
Chao Zheng ◽  
Xinxin Ren ◽  
Jianrong Dai

Distance estimation methods arise in many applications, such as indoor positioning and Covid-19 contact tracing. The received signal strength indicator (RSSI) is favored in distance estimation. However, the accuracy is not satisfactory due to the signal fluctuation. Besides, the RSSI-only method has a large ranging error because it uses fixed parameters of the path loss model. Here, we propose an optimization method combining RSSI and pedestrian dead reckoning (PDR) data to estimate the distance between smart devices. The PDR may provide the high accuracy of walking distance and direction, which is used to compensate for the effects of interference on the RSSI. Moreover, the parameters of the path loss model are optimized to dynamically fit to the complex electromagnetic environment. The proposed method is evaluated in outdoor and indoor <a>environments</a> and is also compared with the RSSI-only method. The results show that the mean absolute error is reduced up to 0.51 m and 1.02 m, with the improvement of 10.60% and 64.55% for outdoor and indoor environments, respectively, in comparison with the RSSI-only method. Consequently, the proposed optimization method has better accuracy of distance estimation than the RSSI-only method, and its feasibility is demonstrated through real-world evaluations.


2018 ◽  
pp. 712-722 ◽  
Author(s):  
Huda Ali Hashim ◽  
◽  
Salim Latif Mohammed ◽  
Sadik Kamel Gharghan

Author(s):  
Ankit Prabhatbhai Patel ◽  
Minsoo Jang ◽  
Tony ABY Varkey ◽  
Kyungshik Lim

2016 ◽  
Vol 22 (9) ◽  
pp. 2558-2561 ◽  
Author(s):  
Sang-Geol Lee ◽  
Yunsick Sung

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yisheng Miao ◽  
Huarui Wu ◽  
Lihong Zhang

The range measurement is the premise for location, and the precise range measurement is the assurance of accurate location. Hence, it is essential to know the accurate internode distance. It is noted that the path loss model plays an important role in improving the quality and reliability of ranging accuracy. Therefore, it is necessary to investigate the path loss model in actual propagation environment. Through the analysis of experiments performed at the wheat field, we find that the best fitted parametric exponential decay model (OFPEDM) can achieve a higher distance estimation accuracy and adaptability to environment variations in comparison to the traditional path loss models. Based on the proposed OFPEDM, we perform the RSSI-based location experiments in wheat field. Through simulating the location characteristics in MATLAB, we find that for all the unknown nodes, the location errors range from 0.0004 m to 5.1739 m. The location error in this RSSI-based location algorithm is acceptable in the wide areas such as wheat field. The findings in this research may provide reference for location estimation in large-scale farmland.


2019 ◽  
Vol E102.B (8) ◽  
pp. 1676-1688 ◽  
Author(s):  
Mitsuki NAKAMURA ◽  
Motoharu SASAKI ◽  
Wataru YAMADA ◽  
Naoki KITA ◽  
Takeshi ONIZAWA ◽  
...  

Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


Author(s):  
Arumjeni Mitayani ◽  
Galih Nugraha Nurkahfi ◽  
Mochamad Mardi Marta Dinata ◽  
Vita Awalia Mardiana ◽  
Nasrullah Armi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document