A new path loss model based on the volumetric occupancy rate for the pine forests at 5G frequency band

Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.

2012 ◽  
Vol 433-440 ◽  
pp. 3954-3958 ◽  
Author(s):  
Supachai Phaiboon ◽  
Supanuch Seesaiprai

This paper presents an empirical path loss model through forest for measuring sea wave energy using 2.4 GHz wireless sensor network (WSN). The empirical path loss model was determined from measurement campaign by using 18 dBm transmitter and the receivers with a low noise amplify. The conventional path loss models for forest environments were carried out such as Weissberger, ITU-R, COST 235 and Torrico models. From the results it is found that the proposed model provides a good agreement and is used for planning WSN.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yu Yu ◽  
Yang Liu ◽  
Wen-Jun Lu ◽  
Hong-Bo Zhu

A novel, receiving antenna-height-dependent path loss model under indoor stair environment is presented. The effect of a cross-beam in the stairs is also considered. The proposed model can be applied to describe both of the line-of-sight (LOS) and the non-LOS (NLOS) cases. By using least square criterion, the parameters of proposed model are extracted. Finally, using the maximum likelihood estimation, the precision of the proposed model is evaluated by the standard deviation of shadowing.


Author(s):  
Pichaya Supanakoon ◽  
Sathaporn Promwong

Currently, an indoor positioning is a challenge application for location-based services (LBS) and proximity-based services (PBS). However, the indoor channel has dense multipath fading, causing more distance error than outdoor positioning. In this paper, the distance error analysis model is proposed for indoor positioning. The indoor channel is modeled as the sum of path loss model and multipath fading model. The path loss model is a linear regression model (LRM) based on Friis’ transmission formula, used for estimating the distance from received signal strength (RSS). The multipath fading is a Gaussian statistical model with zero mean, used for characterizing the multipath fading effect. The normalized distance error is evaluated and defined. The indoor channel with Bluetooth low energy (BLE) beacons is measured and compared with the proposed model. From the results, the normalized distance error obtained from the proposed model corresponds very well to measurement. This proposed model can be used as a tool for designing an indoor positioning system to obtain the specific distance error.


Sign in / Sign up

Export Citation Format

Share Document