scholarly journals An Analytical Prediction Model of Balanced and Unbalanced Faults in Doubly-Fed Induction Machines

Author(s):  
Frederic Maurer ◽  
Trond Leiv Toftevaag ◽  
Jonas Kristiansen Nøland

This paper presents the exact transient solution to the unbalanced and balanced faults in the doubly-fed induction machine (DFIM). Stator currents, rotor currents, and stator fluxes have been validated using simulation and experiment. The work is meant to strengthen and fasten the predictability of large DFIMs in the design stage to comply with mechanical constraints or grid fault issues. Moreover, the analytical approach reduces the computational costs of large-scale stability studies and is especially suited to the initial phase where a plethora design computations must be carried out for the DFIM before it is checked for its transient interaction with the power system. The possibility to dynamically estimate DFIM performance is simplified by original equations derived from first principles. First, a case study of a large 265.50 MVA DFIM is used to verify the proposed "large machine approximation" using simulation, achieving an exact match. Then, laboratory measurements were conducted on a 10.96 kVA and a 1.94 kVA DFIM to validate the transient current peaks predicted in the proposed analytic expressions for two-phase and three-phase faults, respectively.

2021 ◽  
Author(s):  
Frederic Maurer ◽  
Trond Leiv Toftevaag ◽  
Jonas Kristiansen Nøland

This paper presents the exact transient solution to the unbalanced and balanced faults in the doubly-fed induction machine (DFIM). Stator currents, rotor currents, and stator fluxes have been validated using simulation and experiment. The work is meant to strengthen and fasten the predictability of large DFIMs in the design stage to comply with mechanical constraints or grid fault issues. Moreover, the analytical approach reduces the computational costs of large-scale stability studies and is especially suited to the initial phase where a plethora design computations must be carried out for the DFIM before it is checked for its transient interaction with the power system. The possibility to dynamically estimate DFIM performance is simplified by original equations derived from first principles. First, a case study of a large 265.50 MVA DFIM is used to verify the proposed "large machine approximation" using simulation, achieving an exact match. Then, laboratory measurements were conducted on a 10.96 kVA and a 1.94 kVA DFIM to validate the transient current peaks predicted in the proposed analytic expressions for two-phase and three-phase faults, respectively.


Sign in / Sign up

Export Citation Format

Share Document